Volume 40, Issue 8
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397



As part of the European research project Seismic Imaging Techniques for Mineral Exploration (SIT4ME), in-mine seismic active-source and continuous noise measurements were performed within an underground mine gallery of a former radioactive waste repository – the Asse II salt mine (Lower Saxony, Germany) to investigate its geological conditions. Inspired by recent underground active-seismic surveys in the Cote Blanche salt mine and former In-seam seismic surveys in the German hard-coal district of the Ruhr area, we apply conventional exploration and processing methods to an image of the subsurface. Among others, these include data sorting, bandpass filtering, normal moveout correction, static correction and depth (distance) conversion. To process the passive seismic data, we perform an illumination diagnosis for the retrieval of body-wave arrivals and apply passive-source seismic interferometry by cross-correlation (PSI) on noise data dominated by S-waves. We show that active-source seismic measurements can be used from underground mine galleries for the identification of geological structures. Furthermore, we demonstrate that PSI can be used to produce virtual-source underground seismic surveys resembling an active-source seismic survey.


Article metrics loading...

Loading full text...

Full text loading...


  1. Bohlen, T., Borm, G., Giese, R., Klose, C., Mielitz, S. and Otto, P. [2003]. ISIS – Integrated Seismic Imaging System for the Geological Prediction ahead of Underground Construction. 65th EAGE conference & exhibition.
    [Google Scholar]
  2. Chamarczuk, M., Malinowski, M., Draganov, D., Koivisto, E., Heinonen, S. and Juurela, S. [2018]. Seismic interferometry for mineral exploration: Passive seismic experiment over kylylahti mine area, Finland. In (pp. 1–5). European Association of Geoscientists & Engineers. Doi: 10.3997/2214‑4609.201802703.
    https://doi.org/10.3997/2214-4609.201802703 [Google Scholar]
  3. Dickmann, T. [2005]. Seismic prediction while tunneling in hard rock. 65th Annual Meeting of the German Geophysical Society, 59–70.
    [Google Scholar]
  4. Dickmann, T. [2014, 02]. Third tunnel seismic prediction: A next generation tool to characterize rock mass conditions ahead of the tunnel face. Journal of Rock Mechanics & Tunnelling Technology, 20, 35–47.
    [Google Scholar]
  5. Draganov, D. and Ruigrok, E. [2014]. Passive seismic interferometry for subsurface imaging. In M.Beer, I. A.Kougioumtzoglou, E.Patelli, & I. S.-K.Au (Eds.), Encyclopedia of Earthquake Engineering (Vol. 34, pp. 1–13). Berlin, Heidelberg: Springer Berlin Heidelberg. Doi:10.1007/978‑3‑642‑36197‑5378‑1.
    https://doi.org/10.1007/978-3-642-36197-5378-1 [Google Scholar]
  6. Dresen, L. and Ruter, H. [1994]. Seismic Coal Exploration. Elsevier Science. Retrieved from http://gbv.eblib.com/patron/FullRecord. aspx?p=1837724.
    [Google Scholar]
  7. Olivier, G. [2015]. Seismic Imaging and Monitoring in Mines with Ambient Seismic Noise Correlations (Doctoral thesis, Université de Grenoble, Grenoble). Retrieved 06.05.2020, from https://tel.archive-souvertes.fr/tel-01684743/file/55291 OLIVIER 2015 archivage.pdf.
    [Google Scholar]
  8. Orlowsky, D. (2006). Vertical-seismic-profiling (vsp) untertage zur Erhöhung der Aussagkraft untertägiger Vertikalbohrungen.
    [Google Scholar]
  9. Orlowsky, D., Limbrock, K., Lehmann, B. and Peak, A. [2018]. The investigation of the geological situation in the environment of active salt mines applying seismic techniques. EAGE Publications BV Netherlands. Doi: 10.3997/2214‑4609.201801303.
    https://doi.org/10.3997/2214-4609.201801303 [Google Scholar]
  10. Panea, I., Draganov, D., Almagro Vidal, C. and Mocanu, V. [2014]. Retrieval of reflections from ambient noise recorded in the mizil area, romania. Geophysics, 79(3), Q31–Q42. doi: 10.1190/geo2013‑0292.1.
    https://doi.org/10.1190/geo2013-0292.1 [Google Scholar]
  11. Pollok, L., Saßnowski, M., Ku¨hnlenz, T., Gundelach, V., Hammer, J. and Pritzkow, C. [2018]. Geological Exploration and 3D Model of the Asse Salt Structure for Expansion of the Asse II Mine. Mechanical Behavior of Salt, IX, 753–763.
    [Google Scholar]
  12. Polychronopoulou, K., Lois, A. and Draganov, D. [2020]. Body–wave passive seismic interferometry revisited: mining exploration using the body waves of local microearthquakes. Geophysical Prospecting, 68(1), 232–253. doi: 10.1111/1365‑2478.12884.
    https://doi.org/10.1111/1365-2478.12884 [Google Scholar]
  13. Schott, W. and Waclawik, P. [2015]. On the quantitative determination of coal seam thickness by means of in-seam seismic surveys. Canadian Geotechnical Journal, 52(10), 1496–1504. doi: 10.1139/cgj‑2014‑0466.
    https://doi.org/10.1139/cgj-2014-0466 [Google Scholar]
  14. Szymaniak, T. and Schäfer, M. [2002]. Geologisch-tektonische Kartierung der Salzstruktur Asse im Subhercynen Becken.
    [Google Scholar]
  15. Vidal, C.A., Draganov, D., van der Neut, J., Drijkoningen, G. and Wapenaar, K. [2014]. Retrieval of reflections from ambient noise using illumination diagnosis. Geophysical Journal International, 198(3), 1572–1584. doi: 10.1093/gji/ggu164.
    https://doi.org/10.1093/gji/ggu164 [Google Scholar]
  16. Wapenaar, K. and Fokkema, J. [2006]. Green’s function representations for seismic interferometry. Geophysics, 71(4), SI33–SI46. doi:10.1190/1.2213955.
    https://doi.org/10.1190/1.2213955 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error