1887
Volume 41, Issue 2
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Summary

This paper provides a short overview of geothermal energy, including a discussion on the key geological controls on heat distribution in the subsurface, and on the different types of geothermal resource and their potential uses. We then discuss the island of Ireland as an example of the role that geothermal energy can play in decarbonising the heat sector in a region characterised by relatively low-enthalpy (temperature) resources. Significant shallow geothermal potential exists across the island via the deployment of ground source heat pumps. The geology of onshore Ireland provides relatively limited potential for deep hydrothermal aquifers with primary porosity and permeability. Therefore, deep geothermal exploration on the island is likely to be focused on fractured carbonate reservoirs of Carboniferous age, with recorded groundwater temperatures reaching 38°C at 1 km depth, or on lower permeability petrothermal reservoirs developed as Enhanced or Advanced Geothermal Systems. The exception to this occurs within Mesozoic basins in Northern Ireland where porous and permeable Permo-Triassic sandstones are preserved beneath Paleogene basalts. Geothermal potential also exists in equivalent basins immediately offshore Ireland. For example, Triassic sandstones within the Kish Bank Basin, a few kilometres off the coast of Dublin, have estimated reservoir temperatures of 20–120°C across the basin.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2023009
2023-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/fb/41/2/fb2023009.html?itemId=/content/journals/10.3997/1365-2397.fb2023009&mimeType=html&fmt=ahah

References

  1. Abesser, C., Curtis, R., Raine, R. and Claridge, H. [2022]. Geothermal Energy Use, Country Update for United Kingdom.European Geothermal Congress 2022, Berlin, Germany, October 2022.
    [Google Scholar]
  2. Aldwell, C.R. and Burdon, D.J. [1986]. Energy potential of Irish ground-waters.Quarterly Journal of Engineering Geology and Hydrogeology, 19, 133–141. http://dx.doi.org/10.1144/GSL.QJEG.1986.019.02.06.
    [Google Scholar]
  3. Auld, A., Hogg, S., Berson, A. and Gluyas, J. [2014]. Power production via North Sea hot brines.Energy, 78, 674–684. https://doi.org/10.1016/j.energy.2014.10.056.
    [Google Scholar]
  4. Banks, D. [1997]. The spas of England. In: Albu, M., Banks, D. and Nash, H. (Eds.) Mineral and Thermal Groundwater Resources. Chapman & Hall, London, 235–280.
    [Google Scholar]
  5. Banks, D. [2012]. An Introduction to Thermogeology: Ground Source Heating and Cooling. John Wiley & Sons.
    [Google Scholar]
  6. Beamish, D. and Busby, J. [2016]. The Cornubian geothermal province: heat production and flow in SW England: estimates from boreholes and airborne gamma-ray measurements.Geothermal Energy, 4, 4. https://doi.org/10.1186/s40517-016-0046-8.
    [Google Scholar]
  7. Blake, S., Jones, A.G., Henry, T., Kalscheuer, T. and the IRETHERM Team [2015]. A Multi-Disciplinary Investigation of Irish Warm Springs and Their Potential for Geothermal Energy Provision.Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015.
    [Google Scholar]
  8. Blake, S., Henry, T., Moore, J.P., Murray, J., Campanya, J., Muller, M.R., Jones, A.G., Rath, V. and Walsh, J. [2021]. Characterising thermal water circulations in fractured bedrock using a multidisciplinary approach: a case study of St. Gorman’s Well, Ireland.Hydrogeology Journal, 29(8), 2595–2611. http://dx.doi.org/10.1007/s10040-021-02393-1.
    [Google Scholar]
  9. Brassington, F.C. [2007]. A proposed conceptual model for the genesis of the Derbyshire thermal springs.Quarterly Journal of Engineering Geology and Hydrogeology, 40, 35–46. http://dx.doi.org/10.1144/1470-9236/05-046.
    [Google Scholar]
  10. Brock, A. [1989]. Heat flow measurements in Ireland.Tectonophysics, 164, 231–236. http://dx.doi.org/1016/0040-1951(89)90016-4.
    [Google Scholar]
  11. Chew, D.M. and Stillman, C.J. [2009]. Late Caledonian orogeny and magmatism. In: Holland, C.H. and Sanders, I.S. (Eds.) The Geology of Ireland. Dunedin Academic Press, Edinburgh, Scotland, 143–173.
    [Google Scholar]
  12. Corry, D. and Brown, C. [1998]. Temperature and heat flow in the Celtic Sea basins.Petroleum Geoscience, 4, 317–326. http://dx.doi.org/10.1144/petgeo.4.4.317.
    [Google Scholar]
  13. DCC (Dublin City Council) [2020]. Dublin District Heating System – Engineering Review Report.
    [Google Scholar]
  14. DECC (Department of the Environment, Climate and Communications) [2021a]. Climate Action Plan 2021.
    [Google Scholar]
  15. DECC (Department of the Environment, Climate and Communications) [2021b]. Draft Policy Statement on Geothermal Energy for a Circular Economy.
    [Google Scholar]
  16. Dunford, G.M., Dancer, P.N. and Long, K.D. [2001]. Hydrocarbon potential of the Kish Bank Basin: integration within a regional model for the Greater Irish Sea Basin. In: Shannon, P.M., Haughton, P.D.W. and Corcoran, D.V. (Eds.) The Petroleum Exploration of Ireland’s Offshore Basins. Geological Society Special Publication, 188, 135–154. https://doi.org/10.1144/GSL.SP.2001.188.01.07.
    [Google Scholar]
  17. Dunphy, R.B. [2003]. The role of fracture systems in controlling ground-water yields in the post-Silurian rocks of Ireland. Trinity College Dublin. Unpublished MSc thesis.
    [Google Scholar]
  18. European Commission [2021]. Proposal for a Directive of the European Parliament and of the Council amending Directive (EU) 2018/2001 of the European Parliament and of the Council, Regulation (EU) 2018/1999 of the European Parliament and of the Council and Directive 98/70/EC of the European Parliament and of the Council as regards the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652. COM/2021/557 final. Accessed 13th May 2022 at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0557.
    [Google Scholar]
  19. Eurostat [2022]. Share of energy from renewable sources. Accessed on 13th May 2022 at https://ec.europa.eu/eurostat/databrowser/view/NRG_IND_REN__custom_1935856/bookmark/bar?lang=en&book-markId=63f5c89b-8466-45ff-852a-afd667efdc80.
    [Google Scholar]
  20. Fanelli, M., Manetti, P., Dickson, M.H. and Zan, L. [2007]. Geothermal Energy. In: Romano, U. (Ed.) Encyclopaedia of Hydrocarbons, 3. New Developments: Energy, Transport, Sustainability. 595–610.
    [Google Scholar]
  21. Fourier, J.B.J. [1816]. Theorie de la chaleur.Annales de Chimie et de Physique, 3, 350–376.
    [Google Scholar]
  22. Gluyas, J., Auld, A., Adams, C., Hirst, C., Hogg, S. and Craig, J. [2019]. Geothermal potential of the global oil industry.Renewable geothermal energy explorations, 1–11. https://doi.org/10.5772/intechopen.81062.
    [Google Scholar]
  23. Goodman, R., Jones, G., Kelly, J., Slowey, E. and O’Neill, N. [2004]. A geothermal resource map of Ireland, Final report for Sustainable Energy Ireland (SEI).
    [Google Scholar]
  24. Government of Ireland [2021]. Geothermal Energy for a Circular Economy – Draft Policy Statement.
    [Google Scholar]
  25. Graham, J.R. [2009]. Devonian. In: Holland, C.H. and Sanders, I.S. (Eds.) The Geology of Ireland. Dunedin Academic Press, Edinburgh, Scotland, 175–214.
    [Google Scholar]
  26. Gretener, P. E. [1981]. Geothermics, using temperature in hydrocarbon exploration.Continuing Education Course Note Series17, AAPG, Tulsa, Oklahoma.
    [Google Scholar]
  27. GSI (Geological Survey of Ireland) [2020]. An Assessment of Geothermal Energy for District Heating in Ireland.
    [Google Scholar]
  28. Henry, T. [2014]. An integrated approach to characterising the hydrogeology of the Tynagh mine catchment, County Galway, Ireland. NUI Galway. Unpublished PhD thesis.
    [Google Scholar]
  29. Huttrer, G.W. [2021]. Geothermal power generation in the world 2015–2020 update report.Proceedings World Geothermal Congress 2020+1, Reykjavik, Iceland, April–October 2021.
    [Google Scholar]
  30. Johnston, J.D. [1999]. Regional fluid flow and the genesis of Irish Carboniferous base metal deposits.Mineralium Deposita, 34, 571–598. https://doi.org/10.1007/s001260050221.
    [Google Scholar]
  31. Kallesøe, A.J. and Vangkilde-Pedersen, T. [2019] Underground Thermal Energy Storage (UTES) – state-of-the-art, example cases and lessons learned. HEATSTORE project report, GEOTHERMICA – ERA NET Cofund Geothermal.
    [Google Scholar]
  32. Karason, B., Gudjonsdottir, M.S., Valdimarsson, P. and Thorolfsson, G. [2013]. Utilization of offshore geothermal resources for power production.Proceedings of 38th Workshop on Geothermal Reservoir Engineering, 11–13 February 2013, Stanford, California.
    [Google Scholar]
  33. Kavvadias, K.C. and Quoilin, S. [2018]. Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment.Applied Energy, 216, 452–465. https://doi.org/10.1016/j.apenergy.2018.02.080.
    [Google Scholar]
  34. Kelly, C., Hunter Williams, T., Misstear, B.M. and Motherway, K. [2015]. Irish Aquifer Properties – A reference manual and guide. Geological Survey Ireland.
    [Google Scholar]
  35. Law, R., Bridgland, D., Nicholson, D. and Chendorian, M. [2014]. Heat extraction from deep single wells.Proceedings of 39th Workshop on Geothermal Reservoir Engineering, 24–26 February 2014, Stanford, California.
    [Google Scholar]
  36. Ledingham, P., Cotton, L. and Law, R. [2019]. The United Downs Deep Geothermal Power Project.Proceedings of 44th Workshop on Geothermal Reservoir Engineering, 11–13 February 2019, Stanford, California.
    [Google Scholar]
  37. Malek, A.E., Adams, B.M., Rossi, E., Schiegg, H.O. and Saar, M.O. [2021]. Electric Power Generation, Specific Capital Cost, and Specific Power for Advanced Geothermal Systems (AGS).Proceedings of 46th Workshop on Geothermal Reservoir Engineering, 15–17 February 2021, Stanford, California, USA.
    [Google Scholar]
  38. Maruf, M.N.I., Morales-España, G., Sijm, J., Helistö, N. and Kiviluoma, J. [2022]. Classification, potential role, and modeling of power-to-heat and thermal energy storage in energy systems: A review.Sustainable Energy Technologies and Assessments, 53, 102553. https://doi.org/10.1016/j.seta.2022.102553.
    [Google Scholar]
  39. Mather, B. and Fullea, J. [2019]. Constraining the geotherm beneath the British Isles from Bayesian inversion of Curie depth: integrated modelling of magnetic, geothermal, and seismic data.Solid Earth, 10, 839–850. http://dx.doi.org/10.5194/se-10-839-2019.
    [Google Scholar]
  40. Mather, B., Farrell, T. and Fullea, J. [2018]. Probabilistic surface heat flow estimates assimilating paleoclimate history: new implications for the thermochemical structure of Ireland.Journal of Geophysical Research: Solid Earth, 123(12), 10,951–10,967. http://dx.doi.org/10.1029/2018JB016555.
    [Google Scholar]
  41. Merlin Energy Resources Consortium [2020]. The Standard Stratigraphic Nomenclature of Offshore Ireland: an Integrated Lithostratigraphic, Biostratigraphic and Sequence Stratigraphic Framework. Project Atlas. Petroleum Affairs Division, Department of the Environment, Climate and Communications. Special Publication 1/21.
    [Google Scholar]
  42. Mitchell, W.I. and Somerville, I.D. [2011]. Chapter 18: Northern Ireland. In: Waters, C.N., Somerville, I.D., Jones, N.S., Cleal, C.J., Collison, J.D., Waters, R.A., Besly, B.M., Dean, M.T., Stephenson, M.H., Davies, J.R., Freshney, E.C., Jackson, D.I., Mitchell, W.I., Powell, J.H., Barclay, W.J., Browne, M.A.E., Leveridge, B.E., Long, S.L. and McLean, D. (Eds.) A Revised Correlation of Carboniferous Rocks in the British Isles. Special Report No. 26. The Geological Society of London.
    [Google Scholar]
  43. Moeck, I.S. [2014]. Catalog of geothermal play types based on geologic controls.Renewable and Sustainable Energy Reviews, 37, 867–882. http://dx.doi.org/10.1016/j.rser.2014.05.032.
    [Google Scholar]
  44. Moore, J.P. and Walsh, J.J. [2013]. Analysis of fracture systems and their impact on flow pathways in Irish bedrock aquifers.Geological Survey of Ireland Groundwater Newsletter, 51, 28–33.
    [Google Scholar]
  45. Moore, J.P. and Walsh, J.J. [2021]. Quantitative analysis of Cenozoic faults and fractures and their impact on groundwater flow in the bedrock aquifers of Ireland.Hydrogeology Journal, 29, 2613–2632. http://dx.doi.org/10.1007/s10040-021-02395-z.
    [Google Scholar]
  46. Naylor, D. and Shannon, P.M. [2009]. Geology of offshore Ireland. In: Holland, C.H. and Sanders, I.S. (Eds.) The Geology of Ireland. Dunedin Academic Press, Edinburgh, Scotland, 405–460.
    [Google Scholar]
  47. NISRA (Northern Ireland Statistics and Research Agency) [2019]. Northern Ireland Greenhouse Gas Emissions 2019. Department of Agriculture, Environment and Rural Affairs.
    [Google Scholar]
  48. O’Connor, P. [1981]. Radioelement geochemistry of Irish granites.Mineralogical Magazine, 44, 485–495. https://doi.org/10.1180/minmag.1981.044.336.14.
    [Google Scholar]
  49. Paltrinieri, D., Favali, P., Italiano, F., Signanini, P., Caso, C. and Armani, F.B. [2022]. The Marsili Seamount Offshore Geothermal Reservoir: A Big Challenge for an Energy Transition Model.Energies, 15, 1900. https://doi.org/10.3390/en15051900.
    [Google Scholar]
  50. Pasquali, R., Blake, S., Braiden, A.K. and McCormack, N. [2022]. Geothermal Energy Use, Country Update for Ireland.European Geothermal Congress 2022, Berlin, Germany, October 2022.
    [Google Scholar]
  51. Pollack, H.N., Hurter, S.J. and Johnson, J.R. [1993]. Heat flow from the Earth’s interior: Analysis of the global data set.Reviews of Geophysics, 31, 267–280. http://dx.doi.org/10.1029/93RG01249.
    [Google Scholar]
  52. Raine, R.J. and Reay, D.M. [2021]. Geothermal energy potential in Northern Ireland: Summary and recommendations for the Geothermal Advisory Committee. GSNI Technical Report 2021/EM/01.
    [Google Scholar]
  53. Rybach, L. [2003]. Geothermal energy: sustainability and the environment.Geothermics, 32, 463–470. https://doi.org/10.1016/S0375-6505(03)00057-9.
    [Google Scholar]
  54. Šafanda, J. and Rajver, D. [2001]. Signature of the last ice age in the present subsurface temperatures in the Czech Republic and Slovenia.Global and Planetary Change, 29, 241–257. https://doi.org/10.1016/S0921-8181(01)00093-5.
    [Google Scholar]
  55. Schubert, G., Stevenson, D. and Cassen, P. [1980]. Whole planet cooling and the radiogenic heat source contents of the Earth and Moon.Journal of Geophysical Research, 85 (B5), 2531–2538. http://dx.doi.org/10.1029/JB085iB05p02531.
    [Google Scholar]
  56. Simms, M.J. [2009]. Permian and Mesozoic. In: Holland, C.H. and Sanders, I.S. (Eds.) The Geology of Ireland. Dunedin Academic Press, Edinburgh, Scotland, 311–332.
    [Google Scholar]
  57. SEAI (Sustainable Energy Authority of Ireland) [2008]. Assessment of the potential for geological storage of carbon dioxide for the island of Ireland.
    [Google Scholar]
  58. SEAI (Sustainable Energy Authority of Ireland) [2020]. Energy-related CO2 emissions in Ireland 2005–2018 (2020 report).
    [Google Scholar]
  59. SEAI (Sustainable Energy Authority of Ireland) [2022]. National Heat Study: Net Zero by 2050 – Key Insights, Evidence and Actions.
    [Google Scholar]
  60. Sevastopulo, G.D. [2009]. Carboniferous: Mississippian (Serpukhovian) and Pennsylvanian. In: Holland, C.H. and Sanders, I.S. (Eds.) The Geology of Ireland. Dunedin Academic Press, Edinburgh, Scotland, 269–294.
    [Google Scholar]
  61. Sevastopulo, G.D. and Wyse-Jackson, P.N. [2009]. Carboniferous: Mississippian (Tournaisian and Viséan). In: Holland, C.H. and Sanders, I.S. (Eds.) The Geology of Ireland. Dunedin Academic Press, Edinburgh, Scotland, 215–268.
    [Google Scholar]
  62. The KamLAND Collaboration [2011]. Partial radiogenic heat model for Earth revealed by geoneutrino measurements.Nature Geoscience, 4, 647–651. https://doi.org/10.1038/ngeo1205.
    [Google Scholar]
  63. Wheildon, J. and Rollin, K.E. [1986]. Heat Flow. In: Downing, R.A. and Gray, D.A. (Eds.) Geothermal Energy – The Potential in the United Kingdom. British Geological Survey, H.M. Stationary Office, 8–20.
    [Google Scholar]
  64. Williams, A.F., Lawless, J.V., Ward, M.A., Holgate, F.L. and Larking, A. [2010]. A code for geothermal resources and reserves reporting.Proceedings World Geothermal Congress 2010, Bali, Indonesia, April 2010.
    [Google Scholar]
  65. Willmot Noller, N.M., Daly, J.S. and the IRETHERM team [2015]. The contribution of radiogenic heat production studies to hot dry rock geothermal resource exploration in Ireland.Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 2015.
    [Google Scholar]
  66. Yarr, K. [2013]. Assessment of the geothermal potential of the Mourne Granite, County Down. University of Newcastle. Unpublished MSc thesis.
    [Google Scholar]
  67. Younger, P.L. [2015]. Geothermal energy: Delivering on the global potential.Energies, 8, 11737–11754. https://doi.org/10.3390/books978-3-03842-134-4.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2023009
Loading
/content/journals/10.3997/1365-2397.fb2023009
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error