1887
Volume 41, Issue 3
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Summary

Monitoring of time-lapse changes in gravity has been carried out for decades, and measurement repeatability with relative spring gravimeters has in recent years improved to 0.6–2 µGal (standard deviation) for area surveys. This is better than often cited vendor specification. Gravimeters based on other physical principles offer high absolute accuracy or improved time-lapse sensitivity. All these may open possibilities for monitoring smaller and deeper subsurface changes and over shorter time intervals, with applications in hydrocarbon and geothermal production, gas and CO storage, hydrology, volcanology and more. Survey design and data processing are integral parts of a program. Sensor redundancy and repeat measurements provide opportunities for in-situ calibrations. An example from a gas accumulation shows a reduction in gravity of about 3 µGal and subsidence of 5–6 mm over 8 years. Both signals are clearly above the noise level and are likely to have been caused by production from a neighbouring structure. The information can quantify the amount of reservoir pore pressure drop, size of gas cap expansion and vertical movements of the gas-liquid contact to a precision well below 1 m.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2023023
2023-03-01
2024-04-25
Loading full text...

Full text loading...

References

  1. Alnes, H., Eiken, O. and Stenvold, T. [2008]. Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry.Geophysics, 73, WA155–161.
    [Google Scholar]
  2. Antoni-Micollier, L., Carbone, D., Ménoret, V., Lautier-Gaud, J., King, T., Greco, F, Messina, A., Contrafatto, D. and Desruelle, B. [2022]. Detecting Volcano-Related Underground Mass Changes With a Quantum Gravimeter.Geophysical Research Letters.
    [Google Scholar]
  3. Calvo, M., Hinderer, J. and Rosat, S., et al. [2014]. Time stability of spring and superconducting gravimeters through the analysis of very long gravity records.Journal of Geodynamics, 80, 20–33.
    [Google Scholar]
  4. Carbone, D., Poland, M.P., Diament, M. and Greco, F. [2017]. The added value of time-variable microgravimetry to the understanding of how volcanoes work.Earth-Science Reviews, 169, 146–179.
    [Google Scholar]
  5. Carbone, D., Antoni-Micollier, L., Hammond, G., de Zeeuw, van Dalfsen, E., Rivalta, E., Bonadonna, C., Messina, A., Lautier-Gaud, J., Toland, K., Koymans, M., Anastasiou, K., Bramsiepe, S., Cannavò, F., Contrafatto, D., Frischknecht, C., Greco, F., Marocco, G., Middlemiss, R., Ménoret, B., Noack, A., Passarelli, L., Paul, D., Prasad, A., Siligato, G. and Vermeulen, P. [2020]. The NEWTON-g Gravity Imager: Toward New Paradigms for Terrain Gravimetry.Frontiers in Earth Science, 8, article 573396.
    [Google Scholar]
  6. Cooke, A-K., Champollion, C. and Le Moigne, N. [2021]. First evaluation of an absolute quantum gravimeter (AQG#B01) for future field experiments.Geosci. Instrum. Method. Data Syst., 10, 65–79.
    [Google Scholar]
  7. Eiken, O., Glegola, M., Liu, S. and Zumberge, M.A. [2017]. Four decades of gravity monitoring of the Groningen Gas Field. Extended Abstract, First EAGE Workshop on Practical Reservoir Monitoring.
    [Google Scholar]
  8. Eiken, O., Stenvold, T. and Alnes, H. [2022]. Accurate measurements of seabed subsidence above Norwegian gas fields.First Break, 40, 75–78.
    [Google Scholar]
  9. Hinderer, J., Calvo, M., Abdelfettah, Y., Hector, B., Riccardi, U., Ferhat, G. and Bernard, J-D. [2015]. Monitoring of a geothermal reservoir by hybrid gravimetry; feasibility study applied to the Soultz-sous-Forëts and Rittershoffen sites in the Rhine graben.Geothermal Energy, 3(16).
    [Google Scholar]
  10. Jacob, T., Bayer, R., Chery, J. and Le Moigne, N. [2010]. Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer.Journal of Geophysical Research, 115, B06402.
    [Google Scholar]
  11. Klees, R., Reudink, R.H.C. and Flikweert, P.L.M. [2017]. Tilt Susceptibility of the Scintrex CG-5 Autograv Gravity Meter Revisited.International Association of Geodesy Symposia.
    [Google Scholar]
  12. Olsson, P-A., Breili, K., Ophaug, V., Steffen, H., Bilker-Koivula, M., Nielsen, E., Oja, T. and Timmen, L. [2019]. Postglacial gravity change in Fennoscandia — three decades of repeated absolute gravity observations.Geophysical Journal International, 217, 1141–1156.
    [Google Scholar]
  13. Ruiz, H., Lien, M., Vatshelle, M., Alnes, H., Haverl, M. and Sørensen, H. [2020]. Monitoring the Snøhvit gas field using seabed gravimetry and subsidence.SEG Technical Program Expanded Abstracts, 3768–3772.
    [Google Scholar]
  14. Sofyan, Y., Kamah, Y., Fujimitsu, Y., Ehara, S., Fukuda, Y. and Taniguchi, M. [2011]. Mass variation in outcome to high production activity in Kamojang Geothermal Field, Indonesia: A reservoir monitoring with relative and absolute gravimetry.Earth Plants Space, 63, 1157–1167.
    [Google Scholar]
  15. Van Camp, M., Viron, O., Scherneck, H-G., Hinzen, K-G., Williams, S.D.P., Lecocq, T., Quinif, Y. and Camelbeeck, T. [2011]. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe.Journal of Geophysical Research, 116, B08402.
    [Google Scholar]
  16. Yin, Q., Krahenbuhl, R., Li, Y., Wagner, S. and Brady, J. [2016]. Time-lapse gravity data at Prudhoe Bay: New understanding through integration with reservoir simulation models. Expanded Abstract, SEG Annual Meeting.
    [Google Scholar]
  17. Zumberge, M., Alnes, H., Eiken, O., Sasagawa, G. and Stenvold, T. [2008]. Precision of seafloor gravity and pressure measurements for reservoir monitoring.Geophysics, 73, WA133–WA141.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2023023
Loading
/content/journals/10.3997/1365-2397.fb2023023
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error