Volume 41, Issue 5
PDF

Abstract

Abstract

Few localities are as important as the outcrops of the remnants of the Alpine Tethys margins exposed in European Alps in the development of new concepts on the temporospatial evolution of magma-poor rifted margins. The Tasna and Err detachment systems are among the best exposed and preserved structures related to extreme crustal thinning and mantle exhumation world-wide. These detachment systems shaped the most distal parts of the fossil Alpine Tethys magma-poor rifted margins and are key analogues of present-day deep-water examples that can only be imaged through geophysical methods. We present the first digitalisation and integration of the Err and Tasna detachment systems using structure-from-motion photogrammetry. The resulting high-resolution models offer details down to 7 cm and cover multi-kilometre cross-sections from various angles. Comparing these 3D digital outcrop models with high-resolution seismic images from the Galicia distal margin allows us to constrain interpretations of the structures and processes that control the formation of distal passive margins. All data are openly available under FAIR (Findable, Accessible, Interoperable, and Reusable) conditions to the geoscientific community, and we hope this contribution will be the first of many that contribute to the ongoing digitalisation of key outcrops of the fossil Alpine Tethys margins in the European Alps.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2023032
2023-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/fb/41/5/fb2023032.html?itemId=/content/journals/10.3997/1365-2397.fb2023032&mimeType=html&fmt=ahah

References

  1. Anell, I., Lecomte, I., Braathen, A. and Buckley, S.J. [2016]. Synthetic seismic illumination of small-scale growth faults, paralic deposits and low-angle clinoforms: A case study of the Triassic successions on Edgeøya, NW Barents Shelf. Marine and Petroleum Geology, 77, 625–639. https://doi.org/10.1016/j.marpetgeo.2016.07.005.
    [Google Scholar]
  2. Betlem, P., Birchall, T., Lord, G., Oldfield, S., Nakken, L., Ogata, K. and Senger, K. [2022]. High resolution digital outcrop model of faults and fractures in caprock shales, Konusdalen West, central Spitsbergen. Earth System Science Data Discussions, 1–30. https://doi.org/10.5194/essd-2022-143.
    [Google Scholar]
  3. Betlem, P., Mohn, G., Tugend, J. and Manatschal, G. [2023a]. Piz Laviner - Err detachment system digital outcrop data. https://doi.org/10.11582/2023.00002.
    [Google Scholar]
  4. Betlem, P., Mohn, G., Tugend, J. and Manatschal, G. [2023b]. Piz Minschun - Tasna detachment system digital model data. https://doi.org/10.11582/2023.00003.
    [Google Scholar]
  5. Betlem, P. and Rodes, N. [2022]. Geo-SfM - Geo-Structure-from-Motion Course: v2022.09.07. https://doi.org/10.5281/zenodo.7057605
    [Google Scholar]
  6. Betlem, P., Rodes, N., Birchall, T., Dahlin, A., Smyrak-Sikora, A. and Senger, K. [In Review]. The Svalbox Digital Model Database: a geoscientific window to the High Arctic. Geosphere.
    [Google Scholar]
  7. Blender Online Community [2018]. Blender - a 3D modelling and rendering package [Manual]. Retrieved from http://www.blender.org.
    [Google Scholar]
  8. Buckley, S.J., Howell, J.A., Naumann, N., Lewis, C., Chmielewska, M., Ringdal, K., … Pugsley, J. [2022]. V3Geo: a cloud-based repository for virtual 3D models in geoscience. Geoscience Communication, 5(1), 67–82. https://doi.org/10.5194/gc-5-67-2022.
    [Google Scholar]
  9. Buckley, S.J., Ringdal, K., Naumann, N., Dolva, B., Kurz, T.H., Howell, J.A. and Dewez, T.J.B. [2019]. LIME: Software for 3-D visualization, interpretation, and communication of virtual geoscience models. Geosphere, 15(1), 222–235. https://doi.org/10.1130/GES02002.1.
    [Google Scholar]
  10. Burnham, B.S., Bond, C., Flaig, P.P., van der Kolk, D.A. and Hodgetts, D. [2022]. Outcrop conservation: Promoting accessibility, inclusivity, and reproducibility through digital preservation. The Sedimentary Record, 20(1), 5–14.
    [Google Scholar]
  11. Cabello, P., Domínguez, D., Murillo-López, M.H., López-Blanco, M., García-Sellés, D., Cuevas, J.L., Marzo, M. and Arbués, P. [2018]. From conventional outcrop datasets and digital outcrop models to flow simulation in the Pont de Montanyana point-bar deposits (Ypresian, Southern Pyrenees). Marine and Petroleum Geology, 94, 19–42. https://doi.org/10.1016/j.marpetgeo.2018.03.040.
    [Google Scholar]
  12. Coltat, R., Branquet, Y., Gautier, P., Boulvais, P. and Manatschal, G. [2020]. The nature of the interface between basalts and serpentinized mantle in oceanic domains: Insights from a geological section in the Alps. Tectonophysics, 797, 228646. https://doi.org/10.1016/j.tecto.2020.228646.
    [Google Scholar]
  13. Corradetti, A., Tavani, S., Parente, M., Iannace, A., Vinci, F., Pirmez, C., … Mazzoli, S. [2018]. Distribution and arrest of vertical through-going joints in a seismic-scale carbonate platform exposure (Sorrento peninsula, Italy): insights from integrating field survey and digital outcrop model. Journal of Structural Geology, 108, 121–136. https://doi.org/10.1016/j.jsg.2017.09.009.
    [Google Scholar]
  14. Davis, G.A. and Lister, G.S. [1988]. Detachment faulting in continental extension; Perspectives from the Southwestern U.S. Cordillera. In S.P.ClarkJr., B.C.Burchfiel, and J.Suppe (Eds.), Processes in Continental Lithospheric Deformation, 218, 0. https://doi.org/10.1130/SPE218-p133.
    [Google Scholar]
  15. de la Varga, M., Schaaf, A. and Wellmann, F. [2019]. GemPy 1.0: open-source stochastic geological modeling and inversion. Geoscientific Model Development, 12(1), 1–32. https://doi.org/10.5194/gmd-12-1-2019.
    [Google Scholar]
  16. Enge, H.D., and Howell, J.A. [2010]. Impact of deltaic clinothems on reservoir performance: Dynamic studies of reservoir analogs from the Ferron Sandstone Member and Panther Tongue, Utah. AAPG Bulletin, 94(2), 139–161.
    [Google Scholar]
  17. Epin, M.-E. and Manatschal, G. [2018]. Three-Dimensional Architecture, Structural Evolution, and Role of Inheritance Controlling Detachment Faulting at a Hyperextended Distal Margin: The Example of the Err Detachment System (SE Switzerland). Tectonics, 37(12), 4494–4514. https://doi.org/10.1029/2018TC005125.
    [Google Scholar]
  18. Florineth, D. and Froitzheim, N. [1994]. Transition from continental to oceanic basement in the Tasna Nappe: evidence for Early Cretaceous opening of the Valais Ocean.
    [Google Scholar]
  19. Froitzheim, N. and Rubatto, D. [1998]. Continental breakup by detachment faulting: field evidence and geochronological constraints (Tasna nappe, Switzerland). Terra Nova, 10(4), 171–176. https://doi.org/10.1046/j.1365-3121.1998.00187.x.
    [Google Scholar]
  20. Froitzheim, N., Schmid, S.M. and Conti, P. [1994]. Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubünden. Eclogae Geologicae Helvetiae, 87(2), 559–612. Retrieved from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4187999.
    [Google Scholar]
  21. Froitzheim, Nikolaus and Eberli, G.P. [1990]. Extensional detachment faulting in the evolution of a Tethys passive continental margin, Eastern Alps, Switzerland. GSA Bulletin, 102(9), 1297–1308. https://doi.org/10.1130/0016-7606(1990)102<1297:EDFITE>2.3.CO;2.
    [Google Scholar]
  22. Gillard, M., Tugend, J., Müntener, O., Manatschal, G., Karner, G.D., Autin, J., Sauter, D., Figueredo, P. H. and Ulrich, M. [2019]. The role of serpentinization and magmatism in the formation of decoupling interfaces at magma-poor rifted margins. Earth-Science Reviews, 196, 102882. https://doi.org/10.1016/j.earscirev.2019.102882.
    [Google Scholar]
  23. Hodgetts, D., Seers, T., Head, W., and Burnham, B. S. [2015]. High Performance Visualisation of Multiscale Geological Outcrop Data in Single Software Environment. 2015(1), 1–5. https://doi.org/10.3997/2214-4609.201412862
    [Google Scholar]
  24. Hölker, A.B., Manatschal, G., Holliger, K. and Bernoulli, D. [2002]. Seismic structure and response of ocean-continent transition zones – A comparison of an ancient Tethyan and a present-day Iberian site. Marine Geophysical Researches, 23(4), 319–334. https://doi.org/10.1023/A:1025706125747.
    [Google Scholar]
  25. Howell, J.A., Martinius, A.W. and Good, T.R. [2014]. The application of outcrop analogues in geological modelling: a review, present status and future outlook. Geological Society, London, Special Publications, 387(1), 1–25. https://doi.org/10.1144/SP387.12.
    [Google Scholar]
  26. John, B.E. and Foster, D.A. [1993]. Structural and thermal constraints on the initiation angle of detachment faulting in the southern Basin and Range: The Chemehuevi Mountains case study. GSA Bulletin, 105(8), 1091–1108. https://doi.org/10.1130/0016-7606(1993)105<1091:SAT-COT>2.3.CO;2.
    [Google Scholar]
  27. Karner, G.D., Johnson, C., Shoffner, J., Lawson, M., Sullivan, M., Sitgreaves, J., McHarge, J., Stewart, J. and Figueredo, P. [2021]. Chapter 9: Tectono-Magmatic Development of the Santos and Campos Basins, Offshore Brazil. 215–256. https://doi.org/10.1306/13722321MSB.9.1853.
    [Google Scholar]
  28. Lagabrielle, Y. and Cannat, M. [1990]. Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology, 18(4), 319–322. https://doi.org/10.1130/0091-7613(1990)018<0319:AJORTM>2.3.CO;2.
    [Google Scholar]
  29. Larssen, K., Senger, K. and Grundvåg, S.-A. [2020]. Fracture characterization in Upper Permian carbonates in Spitsbergen: A workflow from digital outcrop to geo-model. Marine and Petroleum Geology, 122, 104703. https://doi.org/10.1016/j.marpetgeo.2020.104703.
    [Google Scholar]
  30. Lemoine, M., Tricart, P., and Boillot, G. [1987]. Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic imodel. Geology, 15(7), 622–625. https://doi.org/10.1130/0091-7613(1987)15<622:UAGOFO>2.0.CO;2.
    [Google Scholar]
  31. Lubrano-Lavadera, P., Senger, K., Lecomte, I., Mulrooney, M.J. and Kühn, D. [2018]. Seismic modelling of metre-scale normal faults at a reservoir-cap rock interface in Central Spitsbergen, Svalbard: implications for CO2 storage. Norwegian Journal of Geology. https://doi.org/10.17850/njg003.
    [Google Scholar]
  32. Lymer, G., Cresswell, D.J.F., Reston, T.J., Bull, J.M., Sawyer, D.S., Morgan, J.K., … Shillington, D.J. [2019]. 3D development of detachment faulting during continental breakup. Earth and Planetary Science Letters, 515, 90–99. https://doi.org/10.1016/j.epsl.2019.03.018.
    [Google Scholar]
  33. MacLeod, C.J., Searle, R.C., Murton, B.J., Casey, J.F., Mallows, C., Unsworth, S.C., Achenbach, K.L. and Harris, M. [2009]. Life cycle of oceanic core complexes. Earth and Planetary Science Letters, 287(3), 333–344. https://doi.org/10.1016/j.epsl.2009.08.016.
    [Google Scholar]
  34. Manatschal, G. [2004]. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93(3), 432–466. https://doi.org/10.1007/s00531-004-0394-7.
    [Google Scholar]
  35. Manatschal, G., Chenin, P., Ghienne, J.-F., Ribes, C. and Masini, E. [2022]. The syn‐rift tectono‐stratigraphic record of rifted margins (Part I): Insights from the Alpine Tethys. Basin Research, 34(1), 457–488. https://doi.org/10.1111/bre.12627.
    [Google Scholar]
  36. Manatschal, G., Engström, A., Desmurs, L., Schaltegger, U., Cosca, M., Müntener, O. and Bernoulli, D. [2006]. What is the tectono-meta-morphic evolution of continental break-up: The example of the Tasna Ocean–Continent Transition. Journal of Structural Geology, 28(10), 1849–1869. https://doi.org/10.1016/j.jsg.2006.07.014.
    [Google Scholar]
  37. Manatschal, G. and Müntener, O. [2009]. A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics, 473(1), 4–19. https://doi.org/10.1016/j.tecto.2008.07.021.
    [Google Scholar]
  38. Manatschal, G. and Nievergelt, P. [1997]. A continent-ocean transition recorded in the Err and Platta nappes (Eastern Switzerland). Eclogae Geologicae Helvetiae, 90(1), 3–28.
    [Google Scholar]
  39. Marques, A., Horota, R.K., de Souza, E.M., Kupssinskü, L., Rossa, P., Aires, A.S., … Cazarin, C.L. [2020]. Virtual and digital outcrops in the petroleum industry: A systematic review. Earth-Science Reviews, 208, 103260. https://doi.org/10.1016/j.earscirev.2020.103260.
    [Google Scholar]
  40. Masini, E., Manatschal, G. and Mohn, G. [2013]. The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins. Sedimentology, 60(1), 174–196. https://doi.org/10.1111/sed.12017.
    [Google Scholar]
  41. Masini, E., Manatschal, G., Mohn, G., Ghienne, J.-F. and Lafont, F. [2011]. The tectono‐sedimentary evolution of a supra‐detachment rift basin at a deep‐water magma‐poor rifted margin: the example of the Samedan Basin preserved in the Err nappe in SE Switzerland. Basin Research, 23(6), 652–677. https://doi.org/10.1111/j.1365-2117.2011.00509.x.
    [Google Scholar]
  42. Masini, E., Manatschal, G., Mohn, G. and Unternehr, P. [2012]. Anatomy and tectono-sedimentary evolution of a rift-related detachment system: The example of the Err detachment (central Alps, SE Switzerland). GSA Bulletin, 124(9–10), 1535–1551. https://doi.org/10.1130/B30557.1.
    [Google Scholar]
  43. Mohn, G., Manatschal, G., Beltrando, M., Masini, E. and Kusznir, N. [2012]. Necking of continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics, 31(1). https://doi.org/10.1029/2011TC002961.
    [Google Scholar]
  44. Mohn, Manatschal, G., Müntener, O., Beltrando, M. and Masini, E. [2010]. Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. International Journal of Earth Sciences, 99(1), 75–101. https://doi.org/10.1007/s00531-010-0566-6.
    [Google Scholar]
  45. Nyberg, B., Nixon, C.W. and Sanderson, D.J. [2018]. NetworkGT: A GIS tool for geometric and topological analysis of two-dimensional fracture networks. Geosphere, 14(4), 1618–1634. https://doi.org/10.1130/GES01595.1.
    [Google Scholar]
  46. Over, J.-S.R., Ritchie, A.C., Kranenburg, C.J., Brown, J.A., Buscombe, D.D., Noble, T., Sherwood, C.R., Warrick, J.A. and Wernette, P.A. [2021]. Processing coastal imagery with Agisoft Metashape Professional Edition, version 1.6—Structure from motion workflow documentation. US Geological Survey.
    [Google Scholar]
  47. Pinto, V.H.G., Manatschal, G., Karpoff, A.M. and Viana, A. [2015]. Tracing mantle-reacted fluids in magma-poor rifted margins: The example of Alpine Tethyan rifted margins. Geochemistry, Geophysics, Geo-systems, 16(9), 3271–3308. https://doi.org/10.1002/2015GC005830.
    [Google Scholar]
  48. Pringle, J.K., Howell, J.A., Hodgetts, D., Westerman, A.R., and Hodgson, D.M. [2006]. Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art. First Break, 24(3). https://doi.org/10.3997/1365-2397.2006005.
    [Google Scholar]
  49. QGIS Development Team . [2022]. QGIS geographic information system [Manual]. Retrieved from https://www.qgis.org.
    [Google Scholar]
  50. Reston, T.J., Krawczyk, C.M. and Klaeschen, D. [1996]. The S reflector west of Galicia (Spain): Evidence from prestack depth migration for detachment faulting during continental breakup. Journal of Geophysical Research: Solid Earth, 101(B4), 8075–8091. https://doi.org/10.1029/95JB03466.
    [Google Scholar]
  51. Ribes, C., Ghienne, J.-F., Manatschal, G., Decarlis, A., Karner, G.D., Figueredo, P.H., and Johnson, C.A. [2019]. Long-lived mega fault-scarps and related breccias at distal rifted margins: insights from present-day and fossil analogues. Journal of the Geological Society, 176(5), 801–816. https://doi.org/10.1144/jgs2018-181.
    [Google Scholar]
  52. Ribes, C., Petri, B., Ghienne, J.-F., Manatschal, G., Galster, F., Karner, G.D., Figueredo, P.H., Johnson, C.A. and Karpoff, A.-M. [2020]. Tectono-sedimentary evolution of a fossil ocean-continent transition: Tasna nappe, central Alps (SE Switzerland). GSA Bulletin, 132(7–8), 1427–1446. https://doi.org/10.1130/B35310.1.
    [Google Scholar]
  53. Sapin, F., Ringenbach, J.-C. and Clerc, C. [2021]. Rifted margins classification and forcing parameters. Scientific Reports, 11(1), 8199. https://doi.org/10.1038/s41598-021-87648-3.
    [Google Scholar]
  54. Schaaf, A., de la Varga, M., Wellmann, F. and Bond, C.E. [2021]. Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1. Geoscientific Model Development, 14(6), 3899–3913. https://doi.org/10.5194/gmd-14-3899-2021.
    [Google Scholar]
  55. Schroeder, W., Martin, K. and Lorensen, B. [2006]. The visualization toolkit, 4th edn. Kitware. New York.
    [Google Scholar]
  56. Senger, K., Betlem, P., Birchall, T., Buckley, S.J., Coakley, B., Eide, C.H., … Smyrak-Sikora, A. [2021]. Using digital outcrops to make the high Arctic more accessible through the Svalbox database. Journal of Geoscience Education, 69(2), 123–137. https://doi.org/10.1080/10899995.2020.1813865.
    [Google Scholar]
  57. Senger, K., Betlem, P., Birchall, T., Jr, L.G., Grundvåg, S.-A., Horota, R.K., … Smyrak-Sikora, A. [2022]. Digitising Svalbard’s Geology: the Festningen Digital Outcrop Model. First Break, 40(3), 47–55. https://doi.org/10.3997/1365-2397.fb2022021.
    [Google Scholar]
  58. Sullivan, C.B. and Kaszynski, A.A. [2019]. PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). Journal of Open Source Software, 4(37), 1450. https://doi.org/10.21105/joss.01450.
    [Google Scholar]
  59. Tomassetti, L., Petracchini, L., Brandano, M., Trippetta, F. and Tomassi, A. [2018]. Modeling lateral facies heterogeneity of an upper Oligocene carbonate ramp (Salento, southern Italy). Marine and Petroleum Geology, 96, 254–270. https://doi.org/10.1016/j.marpet-geo.2018.06.004.
    [Google Scholar]
  60. Trümpy, R. [1975]. Penninic-Austroalpine boundary in the Swiss Alps: a presumed former continental margin and its problems. American Journal of Science, 275(A), 209–238.
    [Google Scholar]
  61. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J. and Reynolds, J.M. [2012]. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021.
    [Google Scholar]
  62. Whitney, D. L., Teyssier, C., Rey, P., and Buck, W. R. [2013]. Continental and oceanic core complexes. GSA Bulletin, 125(3–4), 273–298. https://doi.org/10.1130/B30754.1.
    [Google Scholar]
  63. Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., … Mons, B. [2016]. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2023032
Loading
/content/journals/10.3997/1365-2397.fb2023032
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed