1887
Volume 42, Issue 4
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Recent technological advances provide opportunities to enhance students’ learning. Field-based geoscience education is no exception. Traditional pedagogy of field teaching, although invaluable, sometimes struggles to provide students with the depth and breadth of real-world examples to foster a deep understanding of geoscientific landforms and processes. These methods rely on complex landscape features examined in a field activity to exemplify the learning content, while teaching staff typically ground students’ understanding with supplementary printouts of figures, diagrams, and sketches.

In this paper we present VRSvalbard, an interactive web-GIS platform currently populated with 129 virtual field tours of the High Arctic Archipelago of Svalbard. The virtual field tours are built around 1481 aerial photospheres, systematically acquired largely during drone-based data acquisition campaigns as part of the overarching Svalbox project including a database of digital outcrop models. The virtual field tours offer interactive digital field experiences in desktop and virtual reality mode. Selected tours also integrate 3D datasets, digital outcrop models, digital elevation models, interactive map layers, satellite imagery, published figures, photos, audios, videos, and text resources. These elements are presented within a detailed and realistic 3D digital globe that allows students to virtually explore field sites before and after field excursions. In addition, we provide an overview of the motivation behind VRSvalbard, the technical framework of the platform and a summary of using the VRSvalbard platform during education, research and field excursions for the petroleum industry.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2024029
2024-04-01
2024-04-24
Loading full text...

Full text loading...

References

  1. Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R. and Weaver, J. [2010]. Google street view: Capturing the world at street level.Computer, 43(6), 32–38.
    [Google Scholar]
  2. Betlem, P., Rodes, N., Senger, K., Horota, R. and SvalboxTeam [2022a]. Svalbox 360 images 2020. Zenodo.https://doi.org/10.5281/zenodo.7285056.
    [Google Scholar]
  3. Betlem, P., Rodes, N., Horota, R., Senger, K. and SvalboxTeam [2022b]. Svalbox 360 images 2021. Zenodo.https://doi.org/10.5281/zenodo.7286132
    [Google Scholar]
  4. Betlem, P., Rodes, N., Horota, R., Senger, K., Janocha, J., Mosočiová, T. and SvalboxTeam [2022c]. Svalbox 360 images 2022. Zenodo.https://doi.org/10.5281/zenodo.7290650
    [Google Scholar]
  5. Betlem, P., Rodes, N. and Hartz, W. [2023a]. Svalbox 2023 GoNorth - 360 degree Photospheres. Zenodo.https://doi.org/10.5281/zeno-do.8032995.
    [Google Scholar]
  6. Betlem, P., Rodés, N., Birchall, T., Dahlin, A., Smyrak-Sikora, A. and Senger, K. [2023b]. Svalbox Digital Model Database: A geoscientific window into the High Arctic.Geosphere, 19(6), 1640–1666.
    [Google Scholar]
  7. Bond, C.E. and Cawood, A. [2021]. A role for virtual outcrop models in blended learning–improved 3D thinking and positive perceptions of learning.Geoscience Communication. 2021 Apr 19.
    [Google Scholar]
  8. Buckley, S.J., Howell, J.A., Enge, H.D. and Kurz, T.H. [2008]. Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations.Journal of the Geological Society, 165(3), 625–638.
    [Google Scholar]
  9. Carabajal, I.G., Marshall, A.M. and Atchison, C.L. [2017]. A synthesis of instructional strategies in geoscience education literature that address barriers to inclusion for students with disabilities.Journal of Geoscience Education, 65(4), 531–541.
    [Google Scholar]
  10. Carabajal, I. G. and Atchison, C.L. [2020]. An investigation of accessible and inclusive instructional field practices in US geoscience departments.Advances in Geosciences, 53, 53–63.
    [Google Scholar]
  11. Cheng, K. H. and Tsai, C.C. [2019]. A case study of immersive virtual field trips in an elementary classroom: Students’ learning experience and teacher-student interaction behaviors.Computers & Education, 140, 103600.
    [Google Scholar]
  12. Cliffe, A.D. [2017]. A review of the benefits and drawbacks to virtual field guides in today’s Geoscience higher education environment.International Journal of Educational Technology in Higher Education, 14(1), 1–14.
    [Google Scholar]
  13. Dallmann, W.K., (ed.) (2015). Geoscience Atlas of Svalbard, Norsk Polarinstitutt Rapportserie nr. 148
    [Google Scholar]
  14. Eidesen, P. and Hjelle, S.S. [2023]. How to make virtual field guides, and use them to bridge field-and classroom teaching.Authorea Preprints. 2023 Mar 28.
    [Google Scholar]
  15. Horota, R.K., Rossa, P., Marques, A., Gonzaga, L., Senger, K., Cazarin, C.L. and Veronez, M.R. [2022]. An Immersive Virtual Field Experience Structuring Method for Geoscience Education.IEEE Transactions on Learning Technologies, 16(1), 121–132.
    [Google Scholar]
  16. Horota, R.K., Senger, K., Rodes, N., Betlem, P., Smyrak-Sikora, A., Jonassen, M.O. and Braathen, A. [2023]. West Spitsbergen fold and thrust belt: A digital educational data package for teaching structural geology.Journal of Structural Geology, 167, 104781.
    [Google Scholar]
  17. Isaksen, K., Nordli, Ø., Ivanov, B., Køltzow, M.A., Aaboe, S., Gjelten, H.M. and Karandasheva, T. [2022]. Exceptional warming over the Barents area.Scientific reports, 12(1), 9371.
    [Google Scholar]
  18. Jakobsson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J. and Johnson, P. [2008]. An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses.Geophysical Research Letters, 35(7).
    [Google Scholar]
  19. Jordan, B.R. [2015]. A bird’s-eye view of geology: The use of micro drones/UAVs in geologic fieldwork and education.GSA Today, 25(7), 50–52.
    [Google Scholar]
  20. Kingsbury, C.G., Sibert, E.C., Killingback, Z. and Atchison, C.L. [2020]. “Nothing about us without us:” The perspectives of autistic geoscientists on inclusive instructional practices in geoscience education.Journal of Geoscience Education, 68(4), 302–310.
    [Google Scholar]
  21. Norwegian Polar Institute (NPI) [2016]. Geological Map of Svalbard (1:250000): Tromsø, Norway, Norwegian Polar Institute, scale 1:2,500,000, https://doi.org/10.21334/NPOLAR.2016.616F7504.
    [Google Scholar]
  22. Olaussen, S., Grundvåg, S.A., Senger, K., Anell, I., Betlem, P., Birchall, T., Braathen, A., Dallmann, W., Jochmann, M., Johannessen, E.P. and Lord, G. [2024]. Svalbard Composite Tectono-Sedimentary Element, Barents Sea.Geological Society, London, Memoirs, 57(1), pp.M57–2021.
    [Google Scholar]
  23. Pina, P. and Vieira, G. [2022]. UAVs for science in Antarctica.Remote Sensing, 14(7), 1610.
    [Google Scholar]
  24. Pugsley, J.H., Howell, J.A., Hartley, A., Buckley, S.J., Brackenridge, R., Schofield, N., Maxwell, G., Chmielewska, M., Ringdal, K., Naumann, N. and Vanbiervliet, J. [2022]. Virtual field trips utilizing virtual outcrop: construction, delivery and implications for the future.Geoscience Communication.
    [Google Scholar]
  25. Rantanen, M., Karpechko, A.Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K. and Laaksonen, A. [2022]. The Arctic has warmed nearly four times faster than the globe since 1979.Communications Earth & Environment, 3(1), 168.
    [Google Scholar]
  26. Schulmeister, M.K. and Edwards, B. [2020]. A three-dimensional, virtual tour of the Johnston geology museum.
    [Google Scholar]
  27. Senger, K., Betlem, P., Birchall, T., Buckley, S.J., Coakley, B., Eide, C.H. and Smyrak-Sikora, A. [2021]. Using digital outcrops to make the high Arctic more accessible through the Svalbox database.Journal of Geoscience Education, 69(2), 123–137.
    [Google Scholar]
  28. Senger, K., Betlem, P., Birchall, T., Gonzaga Jr, L., Grundvåg, S. A., Horota, R. K. and Smyrak-Sikora, A. [2022]. Digitising Svalbard’s geology: the Festningen digital outcrop model.First Break, 40(3), 47–55.
    [Google Scholar]
  29. Senger, K. and Galland, O. [2022]. Stratigraphic and Spatial extent of HALIP Magmatism in central Spitsbergen.Geochemistry, Geophysics, Geosystems, 23(11), e2021GC010300.
    [Google Scholar]
  30. Sukardani, P.S., Setianingrum, V.M. and Prabayanti, H. [2023]. 360 Virtual Tour for Online Tourism Promotion: A Study of Visual Indonesian Virtual Tour of Surabaya.Technium Social Sciences Journal, 50, 553–558.
    [Google Scholar]
  31. Whitmeyer, S.J. and Dordevic, M. [2021]. Creating virtual geologic mapping exercises in a changing world.Geosphere, 17(1), 226–243.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2024029
Loading
/content/journals/10.3997/1365-2397.fb2024029
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): digital learning; digital twin; drones; field-based education; Svalbard
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error