1887
Volume 42, Issue 4
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Carbon sequestration within sedimentary basins (e.g., sandstone reservoirs, saline aquifers) is one of the promising solutions for reducing GHG emissions. However, this will require the current rate of CO injection to be increased by several orders of magnitude. In practice this will be a shift from a scattered set of pilot projects worldwide e.g. Sleipner, Quest) to large-scale, regional CO injection across a range of sedimentary basins. As a result, there will be a large variety of different ‘CO systems’, with critical and sometimes challenging variations in both the reservoir and caprock conditions, both locally and regionally. As the CCUS industry scales it will become increasingly important to understand how the simultaneous injection of CO across extensive clustered sites will impact overpressure. Research on naturally occurring fluid migration systems shows that when critical boundaries are crossed for regional overpressure, release of gases can occur from the subsurface via different physical mechanisms. To enhance our understanding of this, we utilise analogue and numerical modelling in combination with seismic analysis to identify potential areas of further research within this previously largely unexplored risk category.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2024032
2024-04-01
2025-03-23
Loading full text...

Full text loading...

References

  1. Benson, S. and Cook, P. [2005]. Underground geological storage. In: Metz, B., Davidson, O., Coninck, H., Loos, M., and Meyer, L. (Eds.) IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, 179–194.
    [Google Scholar]
  2. Berkhout, A.J. and Verschuur, D.J. [2011]. A scientific framework for active and passive seismic imaging, with applications to blended data and micro-earthquake responses.Geophysical Journal International, 184(2), 777–792.
    [Google Scholar]
  3. Connolly, D., Lakhlifi, A., Rimaila, K., Kocsis, G., Fæsto, I., Yarushina, V. and Wang, H.[2022]. Visualizing hydrocarbon migration pathways associated with the Ringhorne oil field, Norway: An integrated approach.Interpretation, 10(1), 1F-T211.
    [Google Scholar]
  4. DOE [2024]. Department of Energy.https://www.energy.gov/fecm/carbon-storage-research/. Accessed January, 2024.
    [Google Scholar]
  5. Davis, T. and Landrø, M. [2019]. Multicomponent seismic monitoring. In: Davis, T., Landræ, M., and Wilson, M., (Eds.) Geophysics and Geosequestration. Cambridge University Press, 83–92.
    [Google Scholar]
  6. Gasda, S.E., Wangen, M., Bjørnarå, T. and Elenius, M.T.[2017]. Investigation of caprock integrity due to pressure build-up during high-volume injection into the Utsira formation.Energy Procedia, 114, 3157–3166.
    [Google Scholar]
  7. Gayathri, R., Mahboob, S., Govindarajan, M., Al-Ghanim, K., Ahmed, Z., Al-Mulhm, N., Vodovnik, M. and Vijayalakshmi, S.[2021]. A review on biological carbon sequestration: A sustainable solution for a cleaner air environment, less pollution and lower health risks.Journal of King Saud University, 33(2), 101282.
    [Google Scholar]
  8. Gel’find, I.M. and Graev, M.I. [1991]. Crofton’s function and inversion formulas in real integral geometry.Functional Analysis and its Applications, 25, 1–5.
    [Google Scholar]
  9. Heinemann, Z. and Mittermeir, G.M. [2012]. Derivation of the Kazemi-Gilman-Elsharkawy generalized dual porosity shape factor.Transport in Porous Media, 91, 123–132.
    [Google Scholar]
  10. Hovland, M. and Judd, A. [1988]. Seabed pockmarks and seepages: Impact on geology, biology, and the environment. Graham & Trotman, London.
    [Google Scholar]
  11. IEA, [2024]. International Energy Agency.https://www.iea.org/reports/putting-co2-to-use/. Accessed February, 2024.
    [Google Scholar]
  12. Johnson, J.R. [2017]. Applications of geostatistical seismic inversion to the Vaca Muerta, Neuquen Basin, Argentina.Colorado School of Mines, M.Sc. Thesis.
    [Google Scholar]
  13. Johnson, J.R., Kobchenko, M., Mondol, N.H. and Renard, F., [2022a]. Multiscale synchrotron microtomography imaging of kerogen lenses in organic-rich shales from the Norwegian Continental Shelf.International Journal of Coal Geology, 253, 103954.
    [Google Scholar]
  14. Johnson, J.R., Kobchenko, M., Johnson, A., Mondol, N.H. and Renard, F. [2022b]. Experimental modelling of primary migration in a layered, brittle analogue system.Tectonophysics, 840, 229575.
    [Google Scholar]
  15. Keleman, P., Benson, S., Pilorge, H., Psarras, P. and Wilcox, J.[2019]. An overview of the status and challenges of CO2 storage in minerals and geological formations.Frontiers in Climate, 1(9).
    [Google Scholar]
  16. Li, Z., Wang, J. and Gates, I.D.[2020]. Fracturing gels as analogs to understand fracture behavior in shale gas reservoirs.Rock Mechanics and Rock Engineering, 53, 4345–4355.
    [Google Scholar]
  17. MacMinn, C.W., Dufresne, E.R. and Wettlaufer, J.S.[2015]. Fluid-driven deformation of a soft granuler material.Physical Review X, X5, 011020.
    [Google Scholar]
  18. Matthews, N., Liu, Z., Geesaman, B.J. and Qian, N.[1999]. Perceptual learning on orientation and direction discrimination. Vision Research, 39(22), 3692–3701.
    [Google Scholar]
  19. Onyeaka, H., Miri, T., Obileke, K., Hart, A., Anumudu, C. and Al-Sharify, Z.T., [2021]. Minimizing carbon footprint via microalgae as a biological capture.Carbon Capture Science and Technology, 1, 100007.
    [Google Scholar]
  20. Oye, V., Stanchits, S., Babrinde, O., Bauer, R., Dischiarante, A.M., Langet, N., Goertz-Allman, B. and Frailey, S.[2022]. Cubic-meter scale laboratory fault re-activation experiments to improve the understanding of induced seismicity risks.Nature - Scientific Reports, 12, 8015.
    [Google Scholar]
  21. Portnov, A., Vadakkepuliyambatta, S., Mienert, J. and Hubbard, A.[2016]. Ice-sheet-driven methane storage and release in the Arctic.Nature – Communications, 7, 10314.
    [Google Scholar]
  22. Rass, L., Simon, N.S.C. and Podladchikov, Y.Y.[2018]. Spontaneous formation of fluid escape pipes from subsurface reservoirs.Nature – Scientific Reports, 8, 11116.
    [Google Scholar]
  23. Ringrose, P. [2020]. How to store CO2 underground: Insights from early-mover CCS projects. Springers Briefs in Earth Sciences, Berlin.
    [Google Scholar]
  24. Robinson, A., Callow, B., Bottner, C., Yilo, N., Provenzano, G., Falcon-Suarez, I., Marin-Moreno, H., Lichtschlag, A., Bayrakci, G., Gehrmann, R., Parkes, L, Roche, B., Saleem, U., Schamm, B., Waage, M., Lavayssiere, A., Li, J., Jedari-Eyvazi, F., Sahoo, S., Deusner, C. and Reinardy, B.[2021]. Multiscale chracterisation of chimneys/pipes: Fluid escape structures within sedimentary basins.International Journal of Greenhouse Gas Control, 106, 103245.
    [Google Scholar]
  25. Rutqvist, J. [2012]. The geomechanics of CO2 storage in deep sedimentary formations.Geotechnical and Geological Engineering, 30, 525–551.
    [Google Scholar]
  26. Thermo Fisher Scientific. [2024]. Avizo – Imaging and Processing. TFS.
    [Google Scholar]
  27. Uzun, I., Eker, E., Kazemi, H. and Rutledge, J.M.[2017]. Phase behavior change due to rock deformation in shale reservoirs: A compositional modeling approach.SPE Annual Technical Conference and Exhibition 2017, San Antonio, Extended Absracts, SPE-187442-MS.
    [Google Scholar]
  28. van Noort, R., Spiers, C.J., Drury, M.R. and Kandlanis, M.T., [2013]. Peridotite dissolution and carbonation rates at fracture surfaces under conditions relevant for in situ mineralization of CO2.Geochmica et Cosmochimica Acta, 106, 1–24.
    [Google Scholar]
  29. Wang, L.H., Yarushina, V.M., Alkhimenkov, Y. and Podladchikov, Y.[2022]. Physics-inspired pseudo-transient method and it applications in modelling focused fluid flow with geological complexity.Geophysical International Journal, 229(1), 1–20.
    [Google Scholar]
  30. Yarushina, V.M., Podladchikov, Y.Y. and Wang, L.H.[2020]. Model for (de)compaction and porosity waves in porous rocks under shear stresses.Journal of Geophysical Research – Solid Earth, 125(8), e2020JB019683.
    [Google Scholar]
  31. Yarushina, V.M., Makhnenko, R.Y., Podladchikov, L., Wang, L.H. and Rass, L.[2021]. Viscous behavior of clay-rich rocks and its role in focused fluid flow.Geochemistry, Geophysics, Geosystems, 22(10), e2021GC009949.
    [Google Scholar]
  32. Yarushina, V.M., Wang, L.H., Connolly, D., Kocsis, G., Fæstø, I., Polteau, S., and Lakhlifi, A. [2022]. Focused fluid-flow structures potentially caused by solitary porosity waves.Geology, 50(2), 179–183.
    [Google Scholar]
  33. Zoback, M.D. [2007]. Reservoir Geomechanics.Camrbidge University Press, Cambridge.
    [Google Scholar]
/content/journals/10.3997/1365-2397.fb2024032
Loading
/content/journals/10.3997/1365-2397.fb2024032
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error