1887
Volume 42, Issue 5
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Carbon capture and storage (CCS) technology is essential to European decarbonisation efforts, and several offshore CO storage projects are being developed in the North Sea. Understanding the geomechanical response to CO injection is key to both the pre-characterisation and operation of a storage reservoir. A thorough assessment of seismicity gives critical insights into the stress field and faulting around reservoirs, both key controls on the geomechanical response to injection. Seismicity also illuminates potential hydraulic pathways for leakage, be it directly by revealing the extent of faults, or indirectly through fractures imaged by measurements of seismic anisotropy. High quality seismicity data is critical to underpin all of these methods of analysis. This paper presents the most complete catalogue of seismicity in the North Sea to date. The combined data are enabling revised assessments of seismic hazard and leakage risk in the North Sea, as well as a better understanding of faulting and stress. This study shows the value of unifying disparate seismicity data, allowing for more accurate seismological analyses. These lay the foundation for better management of risks for not only geologic CO storage, but other offshore industries and infrastructure.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2024036
2024-05-01
2025-06-21
Loading full text...

Full text loading...

References

  1. Aki, K. [1965]. Maximum likelihood estimate of b in the formula log N = a-bM and its confidence.Bulletin of Earthquake Research Institute of the University of Tokyo, 43, 237–239.
    [Google Scholar]
  2. Angus, D.A., Kendall, J.-M., Fisher, Q.J., Segura, J.M., Skachkov, S., Crook, A J.L. and Dutko, M. [2010]. Modelling microseismicity of a producing reservoir from coupled fluid-flow and geomechanical simulation.Geophysical Prospecting, 58(5), 901–914. https://doi.org/10.1111/j.1365-2478.2010.00913.x.
    [Google Scholar]
  3. Bungum, H., Lindholm, C. and Faleide, J.I. [2005]. Postglacial seismicity offshore mid-Norway with emphasis on spatio-temporal–magnitude variations.Marine and Petroleum Geology, 22(1–2), 137–148. https://doi.org/10.1016/j.marpetgeo.2004.10.007.
    [Google Scholar]
  4. Cao, A., and Gao, S.S. [2002]. Temporal variation of seismic b -values beneath north-eastern Japan island arc.Geophysical Research Letters, 29(9), 48-1-48-3. https://doi.org/10.1029/2001gl013775.
    [Google Scholar]
  5. Cesca, S., Grigoli, F., Heimann, S., González, Á., Buforn, E., Maghsoudi, S., Blanch, E. and Dahm, T. [2014]. The 2013 September–October seismic sequence offshore Spain: a case of seismicity triggered by gas injection?Geophysical Journal International, 198(2), 941–953. https://doi.org/10.1093/gji/ggu172.
    [Google Scholar]
  6. Cheng, Y., Liu, W., Xu, T., Zhang, Y., Zhang, X., Xing, Y., Feng, B. and Xia, Y. [2023]. Seismicity induced by geological CO2 storage: A review.Earth-Science Reviews, 239, 104369. https://doi.org/10.1016/J.EARSCIREV.2023.104369.
    [Google Scholar]
  7. Goertz-Allmann, B. P., Goertz, A. and Wiemer, S. [2011]. Stress drop variations of induced earthquakes at the Basel geothermal site.Geophysical Research Letters, 38(9), 2011GL047498. https://doi.org/10.1029/2011GL047498.
    [Google Scholar]
  8. Heimann, Sebastian; Isken, Marius; Kühn, Daniela; Sudhaus, Henriette; Steinberg, Andreas; Daout, Simon; Cesca, Simone; Vasyura-Bathke, Hannes; Dahm, Torsten [2018): Grond - A probabilistic earthquake source inversion framework.V. 1.0. GFZ Data Services. https://doi.org/10.5880/GFZ.2.1.2018.003.
    [Google Scholar]
  9. IDC [1999]. Formats and Protocols for Messages: IMS 1.0. Report IDC-3.4.1Rev1.IDC Documentation. Available here (retrieved Aug 2023): www.isc.ac.uk/standards/isf/download/ims1_0.pdf.
    [Google Scholar]
  10. Jones, A., Michael, A., Simpson, B., Jacob, S. and Oppenheimer, D. [2000]. Rapid Distribution of Earthquake Information for Everybody.Seismological Research Letters, 71(3), 355–358. https://doi.org/10.1785/GSSRL.71.3.355.
    [Google Scholar]
  11. Jones, G.A., Raymer, D., Chambers, K. and Kendall, J.-M. [2010]. Improved microseismic event location by inclusion of a priori dip particle motion: a case study from Ekofisk.Geophysical Prospecting, 58(5), 727–737. https://doi.org/10.1111/j.1365-2478.2010.00873.x.
    [Google Scholar]
  12. Jónasson, K., Bessason, B., Helgadóttir, Á., Einarsson, P., Guðmundsson, G. B., Brandsdóttir, B., Vogfjörd, K. S. and Jónsdóttir, K. [2021]. A harmonised instrumental earthquake catalogue for Iceland and the northern Mid-Atlantic Ridge.Natural Hazards and Earth System Sciences, 21(7), 2197–2214. https://doi.org/10.5194/nhess-21-2197-2021.
    [Google Scholar]
  13. Keranen, K.M. and Weingarten, M.B. [2018]. Induced seismicity.Annual Review of Earth and Planetary Sciences, 46, 149–174. https://doi.org/https://doi.org/10.1146/annurev-earth-082517-010054.
    [Google Scholar]
  14. Kettlety, T. and Verdon, J.P. [2021]. Fault Triggering Mechanisms for Hydraulic Fracturing-Induced Seismicity From the Preston New Road, UK Case Study.Frontiers in Earth Science, 9, 670771. https://doi.org/10.3389/feart.2021.670771.
    [Google Scholar]
  15. Laske, G., Masters, G., Ma, Z. and Pasyanos, M. [2013]. Update on CRUST1.0 – A 1-degree global model of Earth’s crust.Geophysical research abstracts, 15(15), 2658. Vienna, Austria: EGU General Assembly 2013. http://adsabs.harvard.edu/abs/2013EGU-GA..15.2658L.
    [Google Scholar]
  16. Ruigrok, E., Domingo-Ballesta, J., van den Hazel, G., Dost, B. and Evers, L. [2019]. Groningen Explosion Database.First Break, 37(8), 37–41.
    [Google Scholar]
  17. Schweitzer, J. [2001]. HYPOSAT – An enhanced routine to locate seismic events.Pure and Applied Geophysics, 158, 277–289.
    [Google Scholar]
  18. Schweitzer, J. [2018]. User Manual for HYPOSAT 6 and HYPOMOD 2. NMSOP-3, PD 11.1, https://doi.org/10.2312/GFZ.NMSOP-3_PD_11.1.
    [Google Scholar]
  19. Schweitzer, J., Köhler, A. and Christensen, J. M. [2021]. Development of the NORSAR Network over the Last 50 Yr.Seismological Research Letters, 92(3), 1501–1511. https://doi.org/10.1785/0220200375.
    [Google Scholar]
  20. Teanby, N., Kendall, J.-M., Jones, R. H. and Barkved, O. [2004]. Stress-induced temporal variations in seismic anisotropy observed in microseismic data.Geophysical Journal International, 156(3), 459–466. https://doi.org/10.1111/j.1365-246X.2004.02212.x.
    [Google Scholar]
  21. Verdon, J.P. and Stork, A.L. [2016]. Carbon capture and storage, geome-chanics and induced seismic activity.Journal of Rock Mechanics and Geotechnical Engineering, 8(6), 928–935. https://doi.org/10.1016/j.jrmge.2016.06.004.
    [Google Scholar]
  22. White, J.A. and Foxall, W. [2016]. Assessing induced seismicity risk at CO2 storage projects: Recent progress and remaining challenges.International Journal of Greenhouse Gas Control, 49, 413–424. https://doi.org/10.1016/j.ijggc.2016.03.021.
    [Google Scholar]
  23. Zarifi, Z., Köhler, A., Ringrose, P., Ottemöller, L., Furre, A.-K., Hansteen, F., Jerkins, A., Oye, V., Dehghan Niri, R. and Bakke, R. [2023]. Background Seismicity Monitoring to Prepare for Large-Scale CO2 Storage Offshore Norway.Seismological Research Letters, 94(2A), 775–791. https://doi.org/10.1785/0220220178.
    [Google Scholar]
  24. Zoback, M.D. and Zinke, J.C. [2002]. Production-induced Normal Faulting in the Valhall and Ekofisk Oil Fields.Pure and Applied Geophysics, 159(1), 403–420. https://doi.org/10.1007/PL00001258.
    [Google Scholar]
/content/journals/10.3997/1365-2397.fb2024036
Loading
/content/journals/10.3997/1365-2397.fb2024036
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error