1887
Volume 42, Issue 6
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

We present a remote sensing analysis to identify potential concentrations of natural hydrogen by observing . Utilising Principal Component Analysis (PCA), distinct features of these formations were delineated, indicating their differentiation from the surrounding environment. It was noted that such distinctiveness occasionally arose from the presence of water and similarities in topography, which also manifested in the PCA contours of the fairy circles. The role of water or humidity emerged as significant in the Thermal Infrared (TIR) response of fairy circles, typically displaying negative anomalies. However, this correlation appeared less straightforward in specific cases such as Brazil. Band ratio methods revealed a pronounced association with ferric iron (Fe+3) and a less conspicuous link with Alunite-Kaolinite.

Additionally, vegetation indices primarily correlated with Normalised Difference Vegetation Index (NDVI) and Moisture Stress Index 1 (MSI1) in agricultural areas, and MSI1 and Water Index 1 (WI1) in water body regions, with other indices (e.g., OCVI, NDWI, and CIG) proved beneficial. Radiometric analysis suggested that low K/Th values were associated with this anomaly in Western Australia, whereas other radiogenic elements did not exhibit clear patterns in the areas studied. Future research directions are proposed, advocating utilising high-resolution geophysical data to gain deeper insights into the associations linked to fairy circles. The implementation of unsupervised and supervised classification algorithms was deemed crucial for identifying new formations, while longitudinal analysis would aid in understanding the evolving nature of these phenomena over time.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2024047
2024-06-01
2024-06-19
Loading full text...

Full text loading...

References

  1. Aimar, L., Frery, E., Strand, J., Heath, C., Khan, S., Moretti, I. and Ong, C. [2023]. Natural hydrogen seeps or salt lakes: how to make a difference? Grass Patch example, Western Australia.Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1236673
    [Google Scholar]
  2. Anderson, M.C., Allen, R.G., Morse, A. and Kustas, W.P. [2012]. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources.Remote Sensing of Environment, 122, 50–65. doi:10.1016/j.rse.2011.08.025
    https://doi.org/10.1016/j.rse.2011.08.025 [Google Scholar]
  3. Ball, P.J. and Czado, K. [2024]. Natural hydrogen: The race to discovery and concept demonstration.Geoscientist34(1), https://geoscientist.online/sections/unearthed/natural-hydrogen-the-race-to-discovery-and-concept-demonstration/
    [Google Scholar]
  4. Bankey, V., Cuevas, A., Daniels, D., Finn, C., Hernandez, I., Hill, P., Kucks, R., Miles, W., Pilkington, M., Roberts, C., Roest, W., Rystrom, V., Shearer, S., Snyder, S., Sweeney, R., Velez, J., Phillips, J. and Ravat, D. [2002]. Digital data grids for the magnetic anomaly map of North America. https://pubs.usgs.gov/of/2002/ofr-02-414/.
    [Google Scholar]
  5. Clark, D. and McPherson, A. [2012]. Neotectonic Features Database. Geoscience Australia, Canberra.
    [Google Scholar]
  6. Congedo, L. [2021]. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS.Journal of Open Source Software, 6(64), 3172. https://doi.org/10.21105/joss.03172.
    [Google Scholar]
  7. Cramer, M.D. and Barger, N.N. [2013]. Are Namibian fairy circles the consequence of self-organizing spatial vegetation patterning?PLoS ONE, 8[8], e70876.
    [Google Scholar]
  8. Darrah, T., Howat, I., Moortgat, J. and Whyte, C. [2024]. Systems and methods for discovering and recovering subsurface fluids and verification of subsurface storage fluids.US Patent App. 18/528,434.
    [Google Scholar]
  9. Dauth, C. [1997]. Airborne Magnetic, Radiometric and Satellite Imagery for Regolith Mapping in the Yilgarn Craton of Western Australia.Exploration Geophysics, 28(2), 199–203. https://doi.org/10.1071/EG997199.
    [Google Scholar]
  10. Donzé, F.V., Bourdet, L., Truche, L., Dusséaux, C. and Huyghe, P. [2024]. Modeling deep control pulsing flux of native H2 throughout tectonic fault-valve systems.International Journal of Hydrogen Energy, 58, 1443–1456. https://doi.org/10.1016/J.IJHYDENE.2024.01.178.
    [Google Scholar]
  11. Duval, J., Carson, J., Holman, P. and Darnley, A. [2005]. Terrestrial Radioactivity and Gamma-ray Exposure in the United States and Canada. https://pubs.usgs.gov/of/2005/1413/.
    [Google Scholar]
  12. European Space Agency, Sinergise. [2021]. Copernicus Global Digital Elevation Model. Distributed by OpenTopography. https://doi.org/10.5069/G9028PQB. Accessed: 2024-03-14.
    [Google Scholar]
  13. Getzin, S., Yizhaq, H. and Bell, B., et al. [2016]. Discovery of fairy circles in Australia supports self-organization theory.Proceedings of the National Academy of Sciences, 113(12), 3551–3556.
    [Google Scholar]
  14. Gunn, P.J., Minty, B.R.S. and Milligan, P.R. [1997]. The Airborne Gamma-Ray Spectrometric Response Over Arid Australian Terranes. In A. G.Gubins [Ed.], Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration, 733–740.
    [Google Scholar]
  15. Guo, J., Fan, H., Wang, X., Zhang, L., Ren, L., He, Y., Ma, F., Meng, W., Bai, X. and Yin, J. [2019]. Integrating Geochemical Anomaly and Remote Sensing Methods to Predict Oil- and Gas-Bearing Areas in the Yanchang Oil Field, Ordos Basin, China.Earth Sciences Research Journal, 23(1), 79–86. doi:10.15446/esrj.v23n1.57544.
    https://doi.org/10.15446/esrj.v23n1.57544 [Google Scholar]
  16. Hill, P., Kucks, R. and Ravat, D. [2009]. Aeromagnetic and Aeroradiometric Data for the Conterminous United States and Alaska from the National Uranium Resource Evaluation [NURE] Program of the U.S. Department of Energy. https://pubs.usgs.gov/of/2009/1129/.
    [Google Scholar]
  17. IEA. [2023]. Global Hydrogen Review 2023. IEA, Paris. https://www.iea.org/reports/global-hydrogen-review-2023. License: CC BY 4.0.
    [Google Scholar]
  18. Jakimow, B., Janz, A., Thiel, F., Okujeni, A., Hostert, P. and van der Linden, S. [2023]. EnMAP-Box: Imaging spectroscopy in QGIS.SoftwareX, 23, 101507.
    [Google Scholar]
  19. Jensen, J.R. [1996]. Introductory Digital Image Processing: A Remote Sensing Perspective. 2nd Edition, Prentice Hall, Inc., Upper Saddle River, NJ.
    [Google Scholar]
  20. Juergens, N. [2017]. The biological underpinnings of Namib Desert fairy circles.Science, 355(6321), 181–182.
    [Google Scholar]
  21. Kalinowski, A. and Oliver, S. [2004]. ASTER Mineral Index Processing Manual.Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/67973.
    [Google Scholar]
  22. Korsch, R.J. and Doublier, M.P. [2015]. Major crustal boundaries of Australia. http://dx.doi.org/10.4225/25/555C181CC0EAE.
    [Google Scholar]
  23. Kucks, R., Phillips, J., Duval, J. and Ambroziak, R. [1993]. Bouguer gravity anomaly data grid for the conterminous U.S.https://mrdata.usgs.gov/metadata/usgravboug.txt.
    [Google Scholar]
  24. Lefeuvre, N., Truche, L., Donzé, F.V., Gal, F., Tremosa, J., Fakoury, R.A., Calassou, S. and Gaucher, E.C. [2022]. Natural hydrogen migration along thrust faults in foothill basins: The North Pyrenean Frontal Thrust case study.Applied Geochemistry, 145, 105396. https://doi.org/10.1016/J.APGEOCHEM.2022.105396.
    [Google Scholar]
  25. Lin, L.H., Hall, J., Lippmann-Pipke, J., Ward, J.A., Lollar, B.., DeFlaun, M., Rothmel, R., Moser, D., Gihring, T.M., Mislowack, B. and Ons-tott, T.C. [2005]. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochemistry, Geophysics, Geosystems, 6(7). https://doi.org/10.1029/2004GC000907.
    [Google Scholar]
  26. Meyer, J. and Juergens, N. [2019]. Microbial Communities and Their Primary Response to Conditions in Namib Desert Fairy Circle Soils.Microbial Ecology, 77(1), 171–185.
    [Google Scholar]
  27. Minty, B.R.S. [1997]. Fundamentals of airborne gamma-ray spectrometry.AGSO Journal of Australian Geology and Geophysics, 17(2), 39–50. http://inis.iaea.org/Search/search.aspx?orig_q=RN:28049082.
    [Google Scholar]
  28. Montero, D., Aybar, C. and Mahecha, M.D. et al. [2023]. A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research.Sci Data10, 197. https://doi.org/10.1038/s41597-023-02096-0.
    [Google Scholar]
  29. Moretti, I., Brouilly, E., Loiseau, K., Prinzhofer, A. and Deville, E. [2021]. Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening.Geosciences 2021, 11(3), 145, https://doi.org/10.3390/GEOSCIENCES11030145.
    [Google Scholar]
  30. Myagkiy, A., Moretti, I. and Brunet, F. [2020]. Space and time distribution of subsurface H2 concentration in so-called “fairy circles”: Insight from a conceptual 2-D transport model.Bulletin de La Société Géologique de France, 191(1), 13. https://doi.org/10.1051/BSGF/2020010.
    [Google Scholar]
  31. Nakamura, A. [2016]. Complete Bouguer Gravity Anomaly Grid of Onshore Australia 2016.Geoscience Australia, Canberra.
    [Google Scholar]
  32. Poudjom Djomani, Y. and Minty, B.R.S. [2019a]. Radiometric Grid of Australia [Radmap] v4 2019 filtered pct potassium grid.Geoscience Australia, Canberra.http://dx.doi.org/10.26186/5dd48d628f4f6.
    [Google Scholar]
  33. Poudjom Djomani, Y. and Minty, B.R.S. [2019b]. Radiometric Grid of Australia [Radmap] v4 2019 filtered ppm thorium.Geoscience Australia, Canberra.http://dx.doi.org/10.26186/5dd48e3eb6367.
    [Google Scholar]
  34. Poudjom Djomani, Y. and Minty, B.R.S. [2019c]. Radiometric Grid of Australia [Radmap] v4 2019 filtered ppm uranium.Geoscience Australia, Canberra.http://dx.doi.org/10.26186/5dd48ee78c980.
    [Google Scholar]
  35. Raymond, O.L., Liu, S., Gallagher, R., Zhang, W. and Highet, L.M. [2012]. Surface Geology of Australia 1:1 million scale dataset 2012 edition. https://dx.doi.org/10.26186/74619.
    [Google Scholar]
  36. Rigollet, C. and Prinzhofer, A. [2022]. Natural hydrogen: a new source of carbon-free and renewable energy that can compete with hydrocarbons.First Break, 40(10), 78–84.
    [Google Scholar]
  37. Rodarmel, C. and Shan, J. [2002]. Principal Component Analysis for Hyperspectral Image Classification.Surv Land inf Syst. 62.
    [Google Scholar]
  38. Roy, D.P., Wulder, M.A., Loveland, T.R., Woodcock, C.E., Allen, R.G., Anderson, M.C., Helder, D.L., Irons, J.R., Johnson, D.M., Kennedy, R.E., Scambos, T.A., Schaaf, C.B., Schott, J.R., Sheng, Y., Vermote, É., Belward, A., Bindschadler, R., Cohen, W.B., Gao, F., Hipple, J.D and Zhu, Z. [2014]. Land-sat-8: Science and product vision for terrestrial global change research.Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001.
    [Google Scholar]
  39. Shaik, R.U., Periasamy, S. and Zeng, W. [2023]. Potential Assessment of PRISMA Hyperspectral Imagery for Remote Sensing Applications. Remote Sensing, 15(5), 1378.
    [Google Scholar]
  40. Smith, N.J.P., Shepherd, T.J., Styles, M.T. and Williams, G.M. [2005]. Hydrogen exploration: A review of global hydrogen accumulations and implications for prospective areas in N.W. Europe.Petroleum Geology Conference Proceedings, 6(0), 349–358. https://doi.org/10.1144/0060349.
    [Google Scholar]
  41. United States Geological Survey. [2021]. United States Geological Survey 3D Elevation Program 1/3 arc-second Digital Elevation Model. Distributed by OpenTopography. https://doi.org/10.5069/G98K778D. Accessed: 2023-11-08.
    [Google Scholar]
  42. Vincent, R.K. [1997]. Fundamentals of geological and environmental remote sensing. Prentice Hall Series in Geographic Information Science. xiii 370 pp. Hemel Hempstead: Prentice Hall. Price £25.95 [hard covers]. ISBN 0 13 348780 6.Geological Magazine. 1998, 135(6), 819–842. doi:10.1017/S0016756898391505.
    https://doi.org/10.1017/S0016756898391505 [Google Scholar]
  43. Wilford, J. [2002]. Airborne gamma-ray spectrometry.Geophysical and Remote Sensing Methods for Regolith Exploration, CRCLEME Open File Report, 144.
    [Google Scholar]
  44. Zgonnik, V. [2020]. The occurrence and geoscience of natural hydrogen: A comprehensive review.Earth-Science Reviews, 203, 103140. https://doi.org/10.1016/J.EARSCIREV.2020.103140.
    [Google Scholar]
/content/journals/10.3997/1365-2397.fb2024047
Loading
/content/journals/10.3997/1365-2397.fb2024047
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error