1887
Volume 42, Issue 7
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

This study presents a specially designed dripping rainfall simulator, functional in both laboratory and field settings, developed to research water infiltration processes relevant to landslide studies. The simulator incorporates several advanced features, including adjustable rainfall parameters and precise monitoring and measurement capabilities for a range of experimental setups. The system’s calibration was achieved by measuring the volume of water over a set period, correlating it with the rainfall intensity. Experiments were conducted on a slope surface for up to five hours at a constant rainfall intensity. During this time, 3D electrical resistivity measurements were taken to assess the influence of rainfall on resistivity data, offering insights into the subsurface dynamics of water infiltration. The findings suggest that the combination of dripping rainfall simulation and 3D electrical resistivity analysis holds promise for advancing landslide risk reduction research. This paper provides an in-depth overview of the simulator’s design, functionality, and performance, emphasising its applicability for comprehensive landslide investigations.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2024054
2024-07-01
2024-07-18
Loading full text...

Full text loading...

References

  1. Bordoni, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M. and Chersich, S. [2015]. Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis.Engineering Geology, 193, 19–37. https://doi.org/10.1016/j.enggeo.2015.04.006.
    [Google Scholar]
  2. Bordoni, M., Valentino, R., Meisina, C., Bittelli, M. and Chersich, S. [2018]. A Simplified Approach to Assess the Soil Saturation Degree and Stability of a Representative Slope Affected by Shallow Landslides in Oltrepò Pavese (Italy).Geosciences, 8, 472. https://doi.org/10.3390/geosciences8120472.
    [Google Scholar]
  3. Bortolozo, C.A., Lavalle, L.V.A., Andrade, M.R.M., Motta, M.F.B., Mendes, R.M., Metodiev, D., Pacheco, T.C.K.F., Guedes, M.R.G. and Porsani, J.L. [2018]. Geophysical Methods to Characterize a Mass Movement Event in Tropical Soils in Campos do Jordão City, Brazil.First Break, 36, 71–73.
    [Google Scholar]
  4. Bortolozo, C.A., Motta, M.F.B., Andrade, M.R.M., Lavalle, L.V.A., Mendes, R.M., Simões, S.J. C., Mendes, T.S.G.M. and Pampuch, L.A. [2019]. Combined analysis of electrical and electromagnetic methods with geotechnical soundings and soil characterization as applied to a landslide study in Campos do Jordão City, Brazil.Journal of Applied Geophysics, 161, 1–14. https://doi.org/10.1016/j.jappgeo.2018.11.017.
    [Google Scholar]
  5. Bortolozo, C.A., Mendes, T.S.G., Egas, H.M., Metodiev, D., Moraes, M.V., Andrade, M.R.M., Pryer, T., Ashby, B., Motta, M.F.B., Simoes, S.J.C., Pampuch, L.A., Mendes, R.M. and Moraes, M.A.E. [2023a]. Enhancing Landslide Predictability: Validating Geophysical Surveys for Soil Moisture Detection in 2D and 3D Scenarios.Journal of South American Earth Sciences, 132.
    [Google Scholar]
  6. Bortolozo, C.A., Mendes, T.S.G., Metodiev, D., Moraes, M.V., Egas, H.M., Simoes, S.J.C., Andrade, M.R.M., Pryer, T., Ashby, B., Motta, M.F.B., Mendes, R.M. and Moraes, M.A.E. [2023b]. Investigating the Applicability of the DC Method for Evaluating Soil Moisture Variation in Mass Movement Studies: Field Experiments with Soil Moisture Sensorsand Laboratory Sample Tests. In: AGU Fall Meeting 2023, 2023. San Francisco. AGU Fall Meeting 2023.
    [Google Scholar]
  7. Cabral, V.C., Reis, F.A.G.V. and D’Affonseca, F.M. et al. [2021].Characterization of a landslide-triggered debris flow at a rainforest-covered mountain region in Brazil [2021]. Natural Hazards, 108, 3021–3043. https://doi.org/10.1007/s11069-021-04811-9.
    [Google Scholar]
  8. Coelho-Netto, A.L., de Souza Avelar, A. and Lacerda, W.A. [2009]. Landslides and disasters in southeastern and southern Brazil.Developments in Earth Surface Processes, 13, 223–243.
    [Google Scholar]
  9. hamiltoncompany.com, 2023. Available at < https://www.hamiltoncompany.com/laboratory-products/needles-knowledge/needle-gaugechart>.
  10. Hojat, A., Arosio, D., Ivanov, V.I., Longoni, L., Papini, M., Scaioni, M., Tresoldi, G. and Zanzi, L. [2019]. Geoelectrical characterization and monitoring of slopes on a rainfall-triggered landslide simulator.Journal of Applied Geophysics, 170. https://doi.org/10.1016/j.jap-pgeo.2019.103844.
    [Google Scholar]
  11. Hirye, M.C.M., Alves, D.S., Filardo Jr, A.S., McPhearson, T. and Wagner, F. [2023]. Assessing Landslide Drivers in Social–Ecological–Technological Systems: The Case of Metropolitan Region of São Paulo, Brazil.Remote Sensing, 15, 3048. https://doi.org/10.3390/rs15123048.
    [Google Scholar]
  12. Iserloh, I., Fister, W., Seeger, M., Willger, H., Ries, J.B. [2012]. A small portable rainfall simulator for reproducible experiments on soil erosion.Soil and Tillage Research, 124, 131–137. https://doi.org/10.1016/j.still.2012.05.016.
    [Google Scholar]
  13. Lavalle, L.V.A., Bortolozo, C.A., Pacheco1, T.C.K.F., Andrade, M.R.M., Motta, M.F.B., Mendes, R.M., Metodiev, D., Guedes, M.R.G. and Porsani, J.L. [2018b]. Evaluation methodology for obtaining geotechnical parameters using electrical resistivity.First Break, 36, 55–58.
    [Google Scholar]
  14. Lavalle, L.V.A., Stabile, R.A., Bortolozo, C.A., Mendes, R.M., Garcia, J.V.C., Motta, M.F.B., Andrade, M.R.M., Pacheco, T.C.K.F. and Metodiev, D. [2018a]. Environmental Data Observation System - Solam for analysis and interpretation of soil moisture variation and precipitation indexes.International Journal of Geosciences (On Line), 9, 658–667.
    [Google Scholar]
  15. Lora, M., Camporese, M. and Salandin, P. [2016]. Design and performance of a nozzle-type rainfall simulator for landslide triggering experiments.Catena, 140, 77–89. https://doi.org/10.1016/j.cate-na.2016.01.018.
    [Google Scholar]
  16. Loch, R.J., Robotham, B.G., Zeller, L., Masterman, N., Orange, D. N., Bridge, B.J., Sheridan, G. and Bourke, J.J. [2001]. A multi-purpose rainfall simulator for field infiltration and erosion studies.Australian Journal of Soil Research, 39(3), 599–610.
    [Google Scholar]
  17. Mamoon, A.A., Jahan, S., He, X., Joergensen, N.E. and Rahman, A. [2019]. First flush analysis using a rainfall simulator on a micro catchment in an arid climate.Science of The Total Environment, 693, 133552. https://doi.org/10.1016/j.scitotenv.2019.07.358.
    [Google Scholar]
  18. Marino, P., Peres, D.J. and Cancelliere, A. et al. [2020]. Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach.Landslides, 17, 2041–2054. 10.1007/s10346‑020‑01420‑8.
    https://doi.org/10.1007/s10346-020-01420-8 [Google Scholar]
  19. Mendes, T.A., Souza Júnior, S.F. and Pereira, S.A.S. [2021]. Implementation of the Green-Ampt Infiltration Model: Comparative between Different Numerical Solutions.Trends in Computational and Applied Mathematics, 22(4), 645–658. 10.5540/tcam.2021.022.04.00645.
    https://doi.org/10.5540/tcam.2021.022.04.00645 [Google Scholar]
  20. Mendonça, M.B., Gonzalez, F.C.G. and da Silva Coelho, G.V. [2021] Likelihood of landslide occurrences for definition of rainfall thresholds applied to the Quitandinha river basin, Petrópolis, Brazil. Landslides, 18, 583–593. https://doi.org/10.1007/s10346-020-01515-2.
    [Google Scholar]
  21. Metodiev, D., Andrade, M., Mendes, R., Moraes, M., Konig, T., Bortolozo, C., Bernardes, T., Luiz, R. and Coelho, J. [2018]. Correlation between Rainfall and Mass Movements in North Coast Region of Sao Paulo State, Brazil for 2014–2018.International Journal of Geosciences (On Line), 09, 669–679.
    [Google Scholar]
  22. Mhaske, S.N., Pathak, K. and Basak, A. [2019]. A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory, Catena, 172, 408–420, https://doi.org/10.1016/j.catena.2018.08.039.
    [Google Scholar]
  23. MIL-STD-810H. [2019]. Defense Logistics Agency, United States. 31 Jan 2019.
    [Google Scholar]
  24. Naves, J., Anta, J., Suárez, J. and Puertas, J. [2020]. Development and Calibration of a New Dripper-Based Rainfall Simulator for Large-Scale Sediment Wash-Off Studies.Water, 12(1), 152. https://doi.org/10.3390/w12010152.
    [Google Scholar]
  25. Nielsen, K.T., Moldrup, P., Thorndahl, S., Nielsen, J.E., Duus, L.B., Rasmussen, S.H., Uggerby, M. and Rasmussen, M.R. [2019]. Automated rainfall simulator for variable rainfall on urban green areas. Hydrological Processes, 33(26), 3364–3377. https://doi.org/10.1002/hyp.13563.
    [Google Scholar]
  26. Pinho, T.M. and Augusto Filho, O. [2022]. Landslide susceptibility mapping using the infinite slope, SHALSTAB, SINMAP, and TRIGRS models in Serra do Mar, Brazil.Journal of Mountain Science. 19, 1018–1036. https://doi.org/10.1007/s11629-021-7057-z.
    [Google Scholar]
  27. Ricks, M.D., Horne, M.A., Faulkner, B., Zech, W.C., Fang, X., Donald, W.N. and Perez, M.A. [2019]. Design of a Pressurized Rainfall Simulator for Evaluating Performance of Erosion Control Practices.Water 2019, 11, 2386. https://doi.org/10.3390/w11112386.
    [Google Scholar]
  28. Rončević, V., Zivanovic, N., Ristic, R., Boxel, J.H.V. and Kasanin-Grubin, M. [2022]. Dripping Rainfall Simulators for Soil Researc - Design Review.Water, 14, 3309.
    [Google Scholar]
  29. Rončević, V., Živanović, N., van Boxel, J.H., Iserloh, T. and Štrbac, S. [2023]. Dripping Rainfall Simulators for Soil Research – Performance Review.Water, 15, 1314.
    [Google Scholar]
  30. Spohr, R., Corcini, A., Pellegrin, J., Bonfanti, J., Soto, M. and Cardoso, T. [2015]. Desenvolvimento e validação de um simulador de chuvas portátil.Revista Brasileira de Recursos Hídricos, 20(2), 411–417.
    [Google Scholar]
  31. Silva, A.F., Talamini, A.A. and Zuquette, L.V. [2021] Engineering geological mapping procedures in data-scarce hillsides for shallow landslide assessments: Applications in southeastern Brazil.Journal of South American Earth Sciences, 111, 103489, https://doi.org/10.1016/j.jsames.2021.103489.
    [Google Scholar]
  32. Sousa, I.A., Bortolozo, C.A., Mendes, T.S.G. M. and Andrade, M.R.M.A. et al. [2023]. Development of a soil moisture forecasting method for a landslide early warning system (LEWS): Pilot cases in coastal regions of Brazil.Journal of South American Earth Sciences, 104631, https://doi.org/10.1016/j.jsames.2023.104631,
    [Google Scholar]
  33. Spolverino, G., Capparelli, G. and Versace, P. [2019]. An Instrumented Flume for Infiltration Process Modeling, Landslide Triggering and Propagation.Geosciences, 9, 108. https://doi.org/10.3390/geoscienc-es9030108.
    [Google Scholar]
  34. Živanović, N., Rončević, V., Spasić, M., Ćorluka, S. and Polovina, S. [2022]. Construction and calibration of a portable rain simulator designed for the in situ researchof soil resistance to erosion.Soil and Water Research, 17(3), 158–169. https://doi.org/10.17221/148/2021-SWR.
    [Google Scholar]
/content/journals/10.3997/1365-2397.fb2024054
Loading
/content/journals/10.3997/1365-2397.fb2024054
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error