1887
Volume 42, Issue 7
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Seismic data with a low-frequency content is crucial for full waveform imaging (FWI) as it can improve the resolution of subsurface features and offer insight into the underlying geological characteristics. A lack of low-frequency content may cause cycle-skipping, which can distort the results of the inversion process. Low frequency content in seismic data is usually estimated using seismic processing-based deghosting techniques. In this study, an attempt is made to reconstruct the low-frequency content using an artificial intelligence approach through a deep learning algorithm. A convolutional neural network (CNN) approach was used to automatically extrapolate the low-frequency content of the band-limited common-shot-gather data, without the need for preprocessing steps. The model was first tested and validated with synthetic data. The optimised model was applied to the Sadewa field, Indonesia, and the obtained low-frequency extrapolated data were used as input for the FWI process. The results show that the proposed algorithm can reliably extrapolate the low-frequency content of the field data with minimal errors and exhibits good agreement with the deghosting results. The FWI results also demonstrate that our proposed method can be a reliable and efficient substitute for determining the low-frequency component of seismic reflection data.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2024059
2024-07-01
2024-07-18
Loading full text...

Full text loading...

References

  1. Aggarwal, C. [2023]. Neural Networks and Deep Learning: A Textbook. Springer International Publishing, New York, USA. https://doi.org/10.1007/978-3-031-29642-0.
    [Google Scholar]
  2. Ambarsari, D.S., Winardhi, I.S., Prakoso, S. and Sukmono, S. [2020]. Reservoir quality determination by using critical porosity and volume of clay: a case study in the Talang Akar Formation in the NW Java Basin, Indonesia:First Break, 38(5), 63–70. https://doi.org/10.3997/1365-2397.fb2020035.
    [Google Scholar]
  3. Alamsyah, M.N., Marmosuwito, S., Sutjiningsih, S., Marpaung, L.P. and Sukmono, S. [2008]. Seismic reservoir characterization of Indonesia’s Southwest Betara Field:The Leading Edge, 27(12), 1598–1607. https://doi.org/10.1190/1.3036958.
    [Google Scholar]
  4. Alamsyah, M. N., Fitrianto, T., Sukmono, S. and Winardhi, S. [2023]. A preliminary analysis of natural CO2-saturated gas sands distribution in the Gemah Field-Jabung Block, South Sumatra Basin, Indonesia, by using simple seismic attributes:The Leading Edge42(11), 726–788. https://doi.org/10.1190/tle42110748.1.
    [Google Scholar]
  5. Ambarsari, D.S., Sukmono, S., Winardhi, I.S., Sanny, T.A., Wardaya, P.D., Septama, E., Setiawan, T., Mulawarman, A., Pratama, R.R., Rossa, V.I. and Murdianto, B. [2021]. The effects of lithology and facies types on the anisotropy parameters and upscaling factor of the sand reservoirs in the deepwater Sadewa Field, Kutei Basin, East Kalimantan, Indonesia:First Break, 39(3), 85–91. https://doi.org/10.3997/1365-2397.fb2021024.
    [Google Scholar]
  6. Beasley, C.J., Coates, R., Ji, Y. and Perdomo, J. [2013]. Wave equation receiver deghosting: A provocative example, SEG Technical Program Expanded Abstract, https://doi.org/10.1190/segam2013-0693.1.
    [Google Scholar]
  7. Bunks, C., Saleck, F.M., Zaleski, S. and Chavent, G. [1995]. Multiscale seismic waveform inversion, Geophysics, 60, 1457–1473. https://doi.org/10.1190/1.1443880.
    [Google Scholar]
  8. de Jonge, T., Vinje, V., Zhao, P., Poole, G. and Iversen, E. [2022]. Source and receiver deghosting by demigration-based supervised learning.Geophysical Prospecting, 7, 1–26. https://doi.org/10.1111/1365-2478.13253.
    [Google Scholar]
  9. Ghosh, S.K. [2000]. Deconvolving the ghost effect of the water surface in marine seismics.Geophysics, 65(6), 1831–1836. https://doi.org/10.1190/1.1444866.
    [Google Scholar]
  10. Hu, Y., Han, L., Xu, Z., Zhang, F. and Zeng, J. [2017]. Adaptive multi-step full waveform inversion based on waveform mode decomposition, Journal of Applied Geophysics, 139, 195–210. https://doi.org/10.1016/j.jappgeo.2017.02.017.
    [Google Scholar]
  11. Jayaram, V., Copeland, D., Ellinger, C., Sicking, C., Nelan, S., Gilberg, J. and Carter, C. [2015]. Receiver deghosting method to mitigate F-K transform artifacts: A non-windowing approach. SEG Technical Program Expanded Abstract, https://doi.org/10.1190/segam2015-5874390.1.
    [Google Scholar]
  12. Kingma, D.P. and Ba, J. [2014]. ‘Adam: A Method for Stochastic Optimization.’Proceedings of the 3rd International Conference on Learning Representations.San Diego, United States.
    [Google Scholar]
  13. Luporini, F., Lauboutin, M., Lange, M., Kukreja, N., Witte, P., Huckelheim, J., Yount, C., Kelly, P.H., Herrmann, F. and Gorman, G. [2020]. Architecture and Performance of Devito, a System for Automated Stencil Computation, ACM Transactions on Mathematical Software, 46, 1165–1187. https://doi.org/10.1145/3374916.
    [Google Scholar]
  14. Oktariena, M., Triyoso, W., Sukmono, S., Fatkhan, F., Septama, E., Wardaya, P.D. and Murdianto, B.S. [2021]. The use of core and log anisotropy parameters in seismic data processing: a case study of deep-water reservoir, IOP Conf. Ser.: Earth Enviro. Sci.873012038. https://doi.org/10.1088/1755-1315/873/1/012038.
    [Google Scholar]
  15. Oktariena, M., Triyoso, W., Fatkhan, F., Sukmono, S., Ambarsari, D. S., Septama, E. and Wardaya, P.D. [2023], Saturated Fluid Variation Effect on Seismic Anisotropy: A Case of Deep Reservoir, IOP Conf. Ser.: Earth Enviro. Sci. 1227 012019. https://doi.org/10.1088/1755-1315/1227/1/012019.
    [Google Scholar]
  16. Oktariena, M., Triyoso, W., Sukmono, S., Fatkhan, F., Septama, E., Wardaya, P.D. and Murdianto, B.S., [2023], Anisotropy Driven Velocity Log Reconstruction in Deviated Well: A Case of Sadewa Deep Water Field, The Leading Edge, 42(10), 702–710. https://doi.org/10.1190/tle42100702.1.
    [Google Scholar]
  17. Pratt, R.G. [1990]. Inverse theory applied to multi-source cross-hole tomography, Geophysical Prospecting, 38, 311–329. https://doi.org/10.1111/j.1365-2478.1990.tb01846.x.
    [Google Scholar]
  18. Rose, R. and Hartono, P. [1978]. Geological evolution of the Tertiary Kutei-Melawi Basin, Kalimantan, Indonesia.Proceeding 7th Annual Convention, Indonesian Petroleum Association. Jakarta, 225–252. https://doi.org/10.29118/ipa.2318.225.251.
    [Google Scholar]
  19. Sari, V.M., Sukmono, S., Sanny, T.A. and Sapiie, B. [2018], Seismic anisotropy estimation of the TAF in South Sumatra basin, Indonesia, using ultrasonic tomography in core plugs, First Break, 36(5), 61–70. http://dx.doi.org/10.3997/1365-2397.n0093.
    [Google Scholar]
  20. Sigalingging, A.S., Winardhi, S. and Dinanto, E. [2021]. Extrapolation of Low-Frequency Content using Deep Learning. Part 1: Synthetic Data Validation, Jurnal Geofisika, 19(2), 74–79. http://dx.doi.org/10.36435/jgf.v20i2.518.
    [Google Scholar]
  21. Sigalingging, A.S., Winardhi, S., Dinanto, E., Triyoso, W., Hendriyana, A., Sukmono, S., Wardaya, P.D., Septama, E. and Raguwanti, R. [2024]. Application of Deep Learning for Low-Frequency Extrapolation to Marine Seismic Data in the Sadewa Field, Kutei Basin, Indonesia. In: Bezzeghoud, M., et al.Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology. MedGU 2022. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-48715-6_51.
    [Google Scholar]
  22. Sukmono, S., Machado, V., Adelina, R. and Ambarsari, D. [2017]. Integration of 3D Seismic attributes for preliminary shallow geohazard identification in deep water exploration area with no well data, First Break, 35(8), 91–97. http://dx.doi.org/10.3997/1365-2397.35.8.89810.
    [Google Scholar]
  23. Sun, H. and Demanet, L. [2018]. Low frequency extrapolation with deep learning, SEG Technical Program Expanded Abstracts, https://doi.org/10.1190/segam2018-2997928.1.
    [Google Scholar]
  24. Sun, H. and Demanet, L. [2020]. Deep Learning for Low-Frequency Extrapolation of Multicomponent Data in Elastic Full Waveform Inversion.IEEE Trans. Geosci. Rem. Sen., 60, 1–11. https://doi.org/10.1109/TGRS.2021.3135790.
    [Google Scholar]
  25. Tarantola, A. [1984]. Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259–1266. https://doi.org/10.1190/1.1441754.
    [Google Scholar]
  26. Thompson, P., Hartman, J.J., Anandito, M.A.A., Kumar, D., Magill, J., Noguchi, K. and Gunawan, B.K. [1984]. Distinguishing gas sand from shale/brine using elastic impedance data and the determination of the lateral extent of channel reservoirs using amplitude data for a channelized deepwater gas field in Indonesia, The Leading Edge, 28(3), https://doi.org/10.1190/1.3104077.
    [Google Scholar]
  27. Virieux, J. and Operto, S. [2009]. An overview of full-waveform inversion in exploration geophysics, Geophysics, 74(11), WCC1–WCC26. http://dx.doi.org/10.1190/1.3238367.
    [Google Scholar]
  28. Winardhi, S., Dinanto, E., Sigalingging, A.S., Adityo, R., Utami, A.P., Ritonga, A.B., Satriawan, W. and Budiyono. [2023], Curved Pseudo Elastic Impedance based on Elastic Attribute Rotation Scheme for Reservoir Petrophysical Property Prediction.IOP Conf. Ser.: Earth Enviro. Sci. 1288 012026. https://doi.org/10.1088/1755-1315/1288/1/012026.
    [Google Scholar]
  29. Witte, P.A., Louboutin, M., Kukreja, N., Luporini, F., Lange, M., Gorman, G.J. and Herrmann, F.J. [2019]. A large-scale framework for symbolic implementations of seismic inversion algorithm in Julia, Geophysics, 84(3), 1–60. https://doi.org/10.1190/geo2018-0174.1.
    [Google Scholar]
  30. Zhang, Q., Zhou, H., Li, Q., Chen, H. and Wang, J. [2016]. Robust source-independent elastic full-waveform inversion in the time domain.Geophysics, 81(2), R29–R44. https://doi.org/10.1190/geo2015-0073.1.
    [Google Scholar]
/content/journals/10.3997/1365-2397.fb2024059
Loading
/content/journals/10.3997/1365-2397.fb2024059
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error