1887
Volume 42, Issue 10
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

The necessary increase in carbon sequestration to reach national and global set targets requires significant geological and technological developments to play a role in the mitigation of climate impacts. Therefore, many options are currently being considered for permanent carbon removal.

In this article we discuss CO mineralisation within mafic and ultramafic rocks, where carbon is incorporated into the structure of the rock through the crystallisation of new, stable carbonate minerals. This technology potentially offers the means to store CO safely, rapidly and permanently in large quantities, but also requires minimal effort to verify and monitor after disposal. We present screening workflow outputs that enable the rapid, global and regional screening of sites that may be prospective for the storage of CO through mafic and ultramafic rock mineralisation, in the subsurface or at tailings in mine sites as examples.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2024086
2024-10-01
2024-10-03
Loading full text...

Full text loading...

References

  1. Benson, S. and Cook, P. [2005]. Underground geological storage. In B.Metz, O.Davidson, H.deConick, M.Loos and L.Meyer (Eds.), Carbon Dioxide Capture and Storage, 197–276.
    [Google Scholar]
  2. Bullock, L.A., James, R.H., Matter, J., Renforth, P. and Teagle, D.A.H. [2021]. Global Carbon Dioxide Removal Potential of Waste Materials from Metal and Diamond Mining. Frontiers in Climate.Frontiers in Climate, 3.
    [Google Scholar]
  3. Carbfix [2024]. Carbfix – How it Works, https://www.carbfix.com/how-it-works.
    [Google Scholar]
  4. Carbfix [2021]. Carbfix technology validated using seawater, https://www.carbfix.com/carbfix-technology-and-seawater
    [Google Scholar]
  5. Ferreira, A., Santos, R.V., de Almeida, T.S., Camargo, M.A., Filho, J.A., Miranda, C.R., dos Passos, S.D.T.A., Baptista, A.D.T., Tassinari, C.C.G., Rubio, V.A. and Capistrano, G.G. [2024]. Unraveling the rapid CO2 mineralization experiment using the Paraná flood basalts of South America. Scientific Reports.Scientific Reports, 14.
    [Google Scholar]
  6. Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y. and Schilling, J. [2013]. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14, 489–518.
    [Google Scholar]
  7. Goff, F. and Lackner, K.S. [1998]. Carbon dioxide sequestering using ultramafic rocks.Environmental Geosciences, 59(3), 89–101.
    [Google Scholar]
  8. Gravestock, C., Jennings, J., and Simmons, M. [2022]. Estimating saline aquifer CO2 storage resource in data lean regions. Subsurface Insights, 1–8.
    [Google Scholar]
  9. Hartmann, J. and Moosdorf, N. [2012]. The new global lithological map database GLiM: A representation of rock properties at the Earth surface.Geochemistry, Geophysics, Geosystems, 13(12), 1–37.
    [Google Scholar]
  10. IEA [2020]. International Energy Agency (IEA), Paris, 174 p.
    [Google Scholar]
  11. IPCC [2018]. Special Report –Global Warming of 1.5 ºC, Intergovernmental Panel on Climate Change (IPCC).
    [Google Scholar]
  12. Jennings, J. and Saunders, C. [2022]. Accelerate Carbon Capture and Storage Site Screening.Subsurface Insights, 1–5.
    [Google Scholar]
  13. Kelemen, P.B., Mcqueen, N., Wilcox, J., Renforth, P., Dipple, G. and Vankeuren, A.P. [2020]. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights.Chemical Geology, 550, 119628.
    [Google Scholar]
  14. Kelemen, P., Benson, S.M., Pilorgé, H., Psarras, P. and Wilcox, J. [2019]. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations.Frontiers in Climate, 1.
    [Google Scholar]
  15. Kelemen, P.B., Aines, E., Bennett, E., Benson, S.M., Carter, E., Coggon, J.A., de Obeso, J.C., Evans, O., Gadikota, G., Dipple, G.M., Godard, M., Harris, M., Higgins, J.A., Johnson, K.T.M., Kourim, F., Lafay, R., Lambart, S., Manning, C.E., Matter, J.M., Michibayashi, K., Morishita, T., Noël, J., Okazaki, K., Renforth, P., Robinson, B., Savage, H., Skarbek, R., Spiegelman, M.W., Takazawa, E., Teagle, D., Urai, J.L. and Wilcox, J. [2018]. In situ carbon mineralization in ultramafic rocks: Natural processes and possible engineered methods.Energy Procedia, 146, 92–102.
    [Google Scholar]
  16. Kim, K., Kim, D., Na, Y., Song, Y. and Wang, J. [2023]. A review of carbon mineralization mechanism during geological CO2 storage.Heliyon, 9(12).
    [Google Scholar]
  17. Kusin, F.M. and Molahid, V.L.M. [2023]. Geoenvironmental and Geotechnical Issues of Coal Mine Overburden and Mine Tailings.Springer Transactions in Civil and Environmental Engineering, 109–131.
    [Google Scholar]
  18. Marieni, C., Voigt, M., Clark, D.E., Gíslason, S.R. and Oelkers, E.H. [2021]. Mineralization potential of water-dissolved CO2 and H2S injected into basalts as function of temperature: Freshwater versus Seawater.International Journal of Greenhouse Gas Control, 109, 103357.
    [Google Scholar]
  19. Mazzotti, M. [2005]. Mineral carbonation and industrial uses of carbon dioxide. In Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L. (Eds.), IPCC Special Report on Carbon Dioxide Capture and Storage, 319–338.
    [Google Scholar]
  20. McGrail, B.P., Schaef, H.T., Spane, F.A., Cliff, J.B., Qafoku, O., Horner, J.A., Thompson, C.J., Owen, A.T. and Sullivan, C.E. [2016]. Field Validation of Supercritical CO2 Reactivity with Basalts.Environmental Science; Technology Letters. American Chemical Society (ACS), 6–10.
    [Google Scholar]
  21. National Academies of Sciences, Engineering, and Medicine [2019]. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda, Washington, DC: The National Academies Press, 1–510 p.
    [Google Scholar]
  22. Oelkers, E.H., Gislason, S.R. and Matter, J. [2008]. Mineral Carbonation of CO2.Elements, 4, 333–337.
    [Google Scholar]
  23. Okoko, G.O. and Olaka, L.A. [2021]. Can East African rift basalts sequester CO2?Case study of the Kenya rift, 13.
    [Google Scholar]
  24. Pedro, J., Araújo, A.A., Moita, P., Beltrame, M., Lopes, L., Chambel, A., Berrezueta, E. and Carneiro, J. [2020]. Mineral Carbonation of CO2 in Mafic Plutonic Rocks, I—Screening Criteria and Application to a Case Study in Southwest Portugal. Applied Sciences.Applied Sciences, 10, 4879.
    [Google Scholar]
  25. Riedl, D., Byrum, Z., Li, S., Pilorgé, H., Psarras, P. and Lebling, K. [2023]. 5 Things to Know About Carbon Mineralization. World Resources Institute.
    [Google Scholar]
  26. Smith, J., Jennings, J. and Butt, T. [2023]. Identify CO2 Storage Potential with On-Demand Screening.Exploration Insights Magazine, 1–9.
    [Google Scholar]
  27. Snæbjörnsdóttir, S.Ó., Oelkers, E.H., Mesfin, K., Aradóttir, E.S., Dideriksen, K., Gunnarsson, I., Gunnlaugsson, E., Matter, J.M., Stute, M. and Gislason, S.R. [2017]. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the Carbfix site in SW-Iceland.International Journal of Greenhouse Gas Control, 58, 87–102.
    [Google Scholar]
  28. Styles, M.T., Sanna, A., Lacinska, A.M., Naden, J. and Maroto-Valer, M. [2014]. The variation in composition of ultramafic rocks and the effect on their suitability for carbon dioxide sequestration by mineralization following acid leaching.Greenhouse Gases: Science and Technology. Greenhouse Gases: Science and Technology, 4, 440–451.
    [Google Scholar]
  29. UNDO [2024]. Enhanced Rock Weathering, https://un-do.com/enhanced-weathering/
    [Google Scholar]
  30. Voigt, M., Marieni, C., Baldermann, A., Galeczka, I.M., Wolff-Boenisch, D., Oelkers, E.H. and Gislason, S.R. [2021]. An experimental study of basalt–seawater–CO2 interaction at 130 °C.Geochimica et Cosmochimica Acta, 308, 21–41.
    [Google Scholar]
/content/journals/10.3997/1365-2397.fb2024086
Loading
/content/journals/10.3997/1365-2397.fb2024086
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error