1887
Volume 36 Number 4
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

To achieve high recovery rates, modern-day production management can benefit from not only snapshot images of the state of the reservoir at regular time intervals, but also continuous monitoring of the dynamic processes induced by pressure changes and fluid movement during production. Production management using time-lapse 4D snapshots is reactive, i.e., adjustments addressing the sweep efficiency or reservoir integrity can only be instigated once the next snapshot image is available after acquisition, processing and interpretation, often years later. For a more proactive reservoir management, it is important to have dynamic reservoir information in real time between the seismic time-lapse snapshots. Such information is contained in microseismic monitoring data and in surface or borehole deformation measurements. If sensors are permanently installed, this information comes at a negligible additional cost, provided that the data can be transferred to shore in real-time and processed automatically.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.n0083
2018-04-01
2024-04-24
Loading full text...

Full text loading...

References

  1. Artman, B., Podladtchikov, I. and Goertz, A.
    [2009]. Elastic time-reverse modeling imaging conditions.79th Technical Program, SEG, Expanded Abstracts, 1207–1211, doi:10.1190/1.3255069.
    https://doi.org/doi:10.1190/1.3255069 [Google Scholar]
  2. Auger, E., Schisselé-Rebel, E. and J.Jia
    [2013]. Suppressing noise while preserving signal for surface microseismic monitoring: The case for the patch design. 83rd Technical Program, SEG, Expanded Abstracts, 2024–2028, doi:10.1190/segam2013‑1396.1.
    https://doi.org/10.1190/segam2013-1396.1 [Google Scholar]
  3. Barkved, O. and T.Kristiansen
    [2005]. Seismic time-lapse effects and stress changes: Examples from a compacting reservoir. The Leading Edge, 24(12), 1244–1248, doi:10.1190/1.2149636
    https://doi.org/10.1190/1.2149636 [Google Scholar]
  4. Bjerrum, L., Matveeva, T., Lindgård, J., Rutledal, H. and Yde, A.
    , 2014, Comparison of Noise Characteristics on an Untrenched and Trenched Cable Deployed in the North Sea for a PRM System, 76th EAGE Conference & Exhibition, Expanded Abstracts, We E103 03.
    [Google Scholar]
  5. Boatwright, J.
    [1984]. Seismic estimates of stress release.Journal of Geophysical Research, 89, 6961–6968.
    [Google Scholar]
  6. Brune, J.
    [1970]. Tectonic stress and the spectra of seismic shear waves from earthquakes.Journal of Geophysical Research, 75, 4997–5009.
    [Google Scholar]
  7. Bussat, S., Bjerrum, L., Dando, B., Bergfjord, E., Iranpour, K. and V.Oye
    [2016]. Offshore injection and overburden surveillance using real-time passive seismic.First Break, 34(7), 51–59.
    [Google Scholar]
  8. Caley, A., Kendall, J.-M., Jones, R., Barkved, O., and P.Folstad
    [2001]. Monitoring fractures in 4D using microseismic data.63rd EAGE Conference & Exhibition, Extended Abstracts, F-23.
    [Google Scholar]
  9. Dando, B., Iranpour, K., Oye, V., Bussat, S. and L.Bjerrum
    [2016]. Realtime microseismic monitoring in the North Sea with advanced noise removal methods.86th Technical Program, SEG, Expanded Abstracts, 2657–2661, doi:10.1190/segam2016‑13840150.1.
    https://doi.org/10.1190/segam2016-13840150.1 [Google Scholar]
  10. Duncan, P. and L.Eisner
    [2010]. Reservoir characterization using surface microseismic monitoring.Geophysics, 75 (5), 75A139–75A146. doi:10.1190/1.3467760.
    https://doi.org/10.1190/1.3467760 [Google Scholar]
  11. Dyer, B., R.Jones, J.Cowles, O.Barkved and P.Folstad
    , [1999]. Micro-seismic Survey of a North Sea Reservoir.World Oil, (March), 74–78.
    [Google Scholar]
  12. Goertz, A., Smith, A. and D.Lecerf
    [2017]. Maximize value with efficient next-generation fiberoptic monitoring solutions.First EAGE Workshop on Practical Reservoir Monitoring, doi: 10.3997/2214‑4609.201700015.
    https://doi.org/10.3997/2214-4609.201700015 [Google Scholar]
  13. Goertz, A., Riahi, N., Kraft, T. and M.Lambert
    [2012]. Modeling detection thresholds of microseismic monitoring networks.82nd Technical Program, SEG, Expanded Abstracts, doi: 10.1190/segam2012‑1069.1.
    https://doi.org/10.1190/segam2012-1069.1 [Google Scholar]
  14. Grechka, V., De La Pena, A., Schisselé-Rebel, E., Auger, E. and P.Roux
    [2015]. Relative location of microseismicity.Geophysics, 80 (6), WC1–WC9, doi:10.1190/geo2014‑0617.1.
    https://doi.org/10.1190/geo2014-0617.1 [Google Scholar]
  15. Grechka, V., Li, Z., Howell, B. and V.Vavryčuk
    [2016]. Single-well moment tensor inversion of tensile microseismic events.Geophysics, 81 (6), KS219–KS229, doi:10.1190/geo2016‑0186.1.
    https://doi.org/10.1190/geo2016-0186.1 [Google Scholar]
  16. Grechka, V.
    [2015]. Tilted TI models in surface microseismic monitoring.Geophysics, 80 (6), WC11–WC23, doi:10.1190/geo2014‑0523.1.
    https://doi.org/10.1190/geo2014-0523.1 [Google Scholar]
  17. Gutenberg, B.
    [1912]. Die seismische Bodenunruhe.Gerl. Beitr. Geoph., 11, 314.
    [Google Scholar]
  18. Hatchell, P., Wang, K., Lopez, J., Stammeijer, J. and M.Davidson
    [2013]. Instantaneous 4D seismic (i4D) for offshore water injection monitoring.83rd Technical Program, SEG, Expanded Abstracts, 4885–4889, doi: 10.1190/segam2013‑0444.1.
    https://doi.org/10.1190/segam2013-0444.1 [Google Scholar]
  19. Hatchell, P., R. deVries, V.Gee, H.Cousson, J.Lopez, S.Dunn, N.Street, A.Parsons, J.Cheramie, and E.Fischer
    [2017]. Seafloor deformation monitoring: Past, present, and future.87th Technical Program, SEG, Expanded Abstracts, 5233–5238, doi: 10.1190/segam2017‑17722686.1.
    https://doi.org/10.1190/segam2017-17722686.1 [Google Scholar]
  20. Herwanger, J, Bottrill, A. and P.Popov
    [2016]. One 4D geomechanical model and its many applications.78th EAGE Conference & Exhibition, Extended Abstracts, Th LHR5 13.
    [Google Scholar]
  21. Kao, H., Visser, R., Smith, B. and S.Venables
    [2018]. Performance assessment of the induced seismicity traffic light protocol for northeastern British Columbia and western Alberta.The Leading Edge, 37(2), 117–126, doi:10.1190/tle37020117.1.
    https://doi.org/10.1190/tle37020117.1 [Google Scholar]
  22. Maxwell, S.C. and T.Urbancic
    [2001]. The role of passive microseismic monitoring in the instrumented oil field.The Leading Edge, 20(6), 636–639, doi: 10.1190/1.1439012.
    [Google Scholar]
  23. Maxwell, S., J.Rutledge, R.Jones and M.Fehler
    [2010]. Petroleum reservoir characterization using downhole microseismic monitoring.Geophysics, 75 (5), 75A129–75A137, doi: 10.1190/1.3477966.
    https://doi.org/10.1190/1.3477966 [Google Scholar]
  24. McNamara, D.E. and R.P.Buland
    [2004]. Ambient noise levels in the continental United States.Bulletin of the Seismological Society of America, 94, 1517–1527.
    [Google Scholar]
  25. Osdal, B., Husby, O., Aronsen, H., Chen, N. and T.Alsos
    [2006]. Mapping the fluid front and pressure build-up using 4D data on Norne Field.The Leading Edge, 25(9), 1134–1141, doi:10.1190/1.2349818.
    https://doi.org/10.1190/1.2349818 [Google Scholar]
  26. Oppert, S., Stefani, J., Eakin, D., Halpert, A., Herwanger, J., Bottrill, A., Popov, P., Tan, L., Artus, V. and M.Oristaglio
    [2017]. Virtual time-lapse seismic monitoring using fully coupled flow and geomechan-ical simulations.The Leading Edge, 36(9), 750–768, doi:10.1190/tle36090750.1.
    https://doi.org/10.1190/tle36090750.1 [Google Scholar]
  27. Park, J., Lindberg, C.R. and F.L.Vernon
    [1987]. Multitaper spectral analysis of high-frequency seismograms.J. Geophys. Res., 92 (12), 675–12, 648.
    [Google Scholar]
  28. Peterson, J.
    [1993]. Observations and modeling of seismic background noise.USGS Open File Report, 95, 93–322.
    [Google Scholar]
  29. Pesicek, J., Child, D., Artman, B. and K.Cieślik
    [2014]. Picking versus stacking in a modern microearthquake location: Comparison of results from a surface passive seismic monitoring array in Oklahoma.Geophysics, 79 (6), KS61–KS68, doi:10.1190/geo2013‑0404.1
    https://doi.org/10.1190/geo2013-0404.1 [Google Scholar]
  30. Ramos Filho, W., Dariva, P., Born, C., Zorzanelli, I., Goertz, A. and A.Smith
    [2017]. Permanent reservoir monitoring at Jubarte Field - 4D Results and Reservoir Characterization.First EAGE Workshop on Practical Reservoir Monitoring, Expanded Abstract.
    [Google Scholar]
  31. Schinelli, M., Dabbadia, M., Conners, S., Guerra, R. and A.Kazantsev
    [2015]. Microseismic technology to monitor fault reactivation.14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Expanded Abstracts, 602–604.
    [Google Scholar]
  32. Teanby, N., Kendall, J.-M., Jones, R. and O.Barkved
    [2004]. Stress-induced temporal variations in seismic anisotropy observed in micro-seismic data.Geophysical Journal International, 156, 459–466.
    [Google Scholar]
  33. Witten, B., S.Montgomery and B.Artman
    , 2012, Shear wave arrivals in surface microseismic data.SEG Technical Program, Expanded Abstracts, 1–5. doi:10.1190/segam2012‑0722.1
    https://doi.org/10.1190/segam2012-0722.1 [Google Scholar]
  34. Wuestefeld, A., Verdon, J., Kendall, J., Rutledge, J., Clarke, H. and J.Wookey
    [2011]. Inferring rock fracture evolution during reservoir stimulation from seismic anisotropy.Geophysics, 76 (6), WC157–WC166, doi: 10.1190/geo2011‑0057.1
    https://doi.org/10.1190/geo2011-0057.1 [Google Scholar]
  35. Wuestefeld, A., Urbancic, T., Baig, A. and M.Prince
    [2012]. After a decade of microseismic monitoring: Can we evaluate stimulation effectiveness and design better stimulations.SPE/EAGE European Unconventional Resources Conference and Exhibition, SPE152665.
    [Google Scholar]
  36. Wuestefeld, A., Urbancic, T. and A.Baig
    [2013]. Identifying reservoir drainage patterns from microseismic data.75th EAGE Conference & Exhibition, Extended Abstracts, doi:10.3997/2214‑4609.20130934.
    https://doi.org/10.3997/2214-4609.20130934 [Google Scholar]
  37. Yudovich, A., Chin, L.Y. and D.R.Morgan
    [1989]. Casing Deformation in Ekofisk.Society of Petroleum Engineers, doi: 10.2118/17856‑PA
    https://doi.org/10.2118/17856-PA [Google Scholar]
  38. Zoback, M.D. and C.Zinke
    [2002]. Production-induced normal faulting in the Valhall and Ekofisk oil fields.Pure and Applied Geophysics, 159(1), 403–420.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.n0083
Loading
/content/journals/10.3997/1365-2397.n0083
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error