1887
Volume 36 Number 8
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Nowadays, population growth in the large urban centres and uncontrolled use of natural resources has provoked environmental impacts that limit the quality of life. Thus, there is an increase in research related to environmental contamination, geotechnical, urban planning studies, among others, aiming at a better knowledge of the subsurface in support of the management of soil use in a sustainable way, without impacting the future generations.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.n0114
2018-08-01
2024-03-29
Loading full text...

Full text loading...

References

  1. Alani, A.M., Tosti, F.
    [2018]. GPR applications in structural detailing of a major tunnel using different frequency antenna systems.Construction and Building Materials, 158, 1111–1122.
    [Google Scholar]
  2. Almeida, E.R., Porsani, J.L., Catapano, I., Gennarelli, G., Soldovieri, F.
    [2016]. Microwave Tomography-Enhanced GPR in Forensic Surveys: The Case Study of a Tropical Environment.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 115–124.
    [Google Scholar]
  3. Almeida, E.R.
    [2016]. Analise da tomografia de micro-ondas em dados GPR sob condicoes controladas: Aplicacoes em arqueologia e estudos forenses. Ph.D. Thesis, Universidade de Sao Paulo, Brazil.
    [Google Scholar]
  4. Annan, A.P.
    [2003]. Ground Penetrating Radar Principles, Procedures & Applications.Sensors & Software Inc., 286 p.
    [Google Scholar]
  5. Atekwana, E.A., Sauck, W.A., WerkemaJr., D.D.
    [2000]. Investigations of geoelectrical signaturaes at a hydrocarbon contaminated site.Journal of Applied Geophysics, 44, 167–180.
    [Google Scholar]
  6. Chang, H., PingLin, L., Yang, C.H., Wang, T.P.
    [2016]. Geoelectrical mapping of the soil and groundwater contaminated site: Case study from Taiwam.7th International Conference on Environmental and Engineering Geophysics & Summit Forum of Chinese Academy of Engineering on Engineering Science and Technology, Extended Abstracts.
    [Google Scholar]
  7. Cheng, N.F., Tang, H.W.C. and Chan, C.T.
    [2013]. Identification and Positioning of Underground Utilities Using Ground Penetrating Radar (GPR).Sustainable Environment Research, 23, 141–152.
    [Google Scholar]
  8. Daniels, J.J., Roberts, R., Vendl, M.
    [1995]. Ground Penetrating Radar for the Detection of Liquid Contaminants.Journal of Applied Geophysics, 33, 95–207.
    [Google Scholar]
  9. Daniels, J.J.
    [2007]. Ground Penetrating Radar.IEE Radar, Sonar, Navigation and Avionics Series 15. 2nd ed., The Institution of Electrical Engineers, London.
    [Google Scholar]
  10. Ghodoosi, F., Bagchi, A., Zayed, T., Hosseini, M.R.
    [2018]. Method for developing and updating deterioration models for concrete bridges decks using GPR data.Automation in Construction, 91, 133–141.
    [Google Scholar]
  11. Grandjean, G., Gourry, J.C., Bitri, A.
    [2000]. Evaluation of GPR techniques for civil-engine- ering applications: study on a test site.Journal of Applied Geophysics, 45, 141–156.
    [Google Scholar]
  12. Himi, M., Pérez-Gracia, V., Casas, A., Caselles, O., Clapés, J., Rivero, L.
    [2016]. Non-destructive geophysical characterization of cultural heritage buildings: applications at Spanish cathedrals.First Break, 34, 93–101.
    [Google Scholar]
  13. Jaw, S.W. and Hashim, M.
    [2013]. Locating Accuracy of Underground Utility Mapping Using Ground Penetrating Radar.Tunnelling and Underground Space Technology, 35, 20–29.
    [Google Scholar]
  14. Jol, H.M.
    [2009]. Ground Penetrating Radar: Theory and Applications.Elsevier, Amsterdam.
    [Google Scholar]
  15. Levashov, S., Yakymchuk, N., Korchagin, I., Bozhezha, D.
    [2018]. Application of geoelectrical and georadar methods for the detection and localization of damages in the water supply network.11th EAGE International Conference on Monitoring of Geological Processes and Ecological Condition of the Environment, Extended Abstracts.
    [Google Scholar]
  16. Metwaly, M.
    [2015]. Application of GPR Technique for Subsurface Utility Mapping: A Case Study from Urban Area of Holy Meca, Saudi Arabia.Measurement, 60, 139–145.
    [Google Scholar]
  17. Piro, S., Negri, S., Quarta, T.A.M., Pipan, M., Forte, E., Ciminale, M., Cardarelli, E., Capizzi, P., Sambuelli, L.
    [2015]. Geophysics and cultural heritage: a living field of research for Italian geophysicists.First Break, 33, 43–54.
    [Google Scholar]
  18. Poluha, B., Porsani, J.L., Almeida, E.R., Santos, V.R.N., Allen, S.J.
    [2017]. Depth Estimates of Buried Utility Systems Using the GPR Method: Studies at the IAG/USP Geophysics Test Site.International Journal of Geosciences, 8, 726–742.
    [Google Scholar]
  19. Porsani, J.L.
    [1999]. Ground Penetrating Radar (GPR): Proposta metodologica de emprego em estudos geologico-geotecnicos nas regioes de Rio Claro e Descalvado-SP. Ph.D. Thesis, Universidade Estadual Paulista Julio de Mesquita, Brazil.
    [Google Scholar]
  20. Porsani, J.L., Borges, W.R., Elis, V.R., Diogo, L.A., Hiodo, F.Y., Marrano, A., Birelli, C.A.
    [2004]. Investigações Geofísicas de Superfície e de Poço no Sítio Controlado de Geofísica rasa do IAG/USP.Revista Brasileira de Geofísica, 22, 245–258.
    [Google Scholar]
  21. Porsani, J.L., Malagutti Filho, W., Elis, V.R., Dourado, J.C., Moura, H.P.
    [2004]. The Use of GPR and VES in Delineating a Contamination Plume in a Landfill site: a Case Study in SE Brazil.Journal of Applied Geophysics, 55, 199–209.
    [Google Scholar]
  22. Porsani, J.L., Borges, W.R., Rodrigues, S.I., Hiodo, F.Y.
    [2006]. O Sítio Controlado de Geofísica Rasa do IAG/USP: Instalação e Resultados GPR 2D-3D.Revista Brasileira de Geofísica, 24, 49–61.
    [Google Scholar]
  23. Porsani, J.L., Sauck, W.A.
    [2007]. Ground-penetrating radar profiles over multiple steel drums: Artifact removal through effective data processing.Geophysics, 72, J77–J83.
    [Google Scholar]
  24. Porsani, J.L., Slob, E., Lima, R.S., Leite, D.N.
    [2010]. Comparing detection and location performance of perpendicular and parallel broadside GPR antenna orientations.Journal of Applied Geophysics, 70, 1–8.
    [Google Scholar]
  25. Porsani, J.L., Ruy, Y.B., Ramos, F.P., Yamanouth, G.R.B.
    [2012]. GPR applied to mapping utilities along the route of the Line 4 (yellow) subway tunnel construction in São Paulo City, Brazil.Journal of Applied Geophysics, 80, 25–31.
    [Google Scholar]
  26. Porsani, J.L., Almeida, E.R., Poluha, B., Santos, V.R.N.
    [2017]. GPR Tomographic Imaging of Concrete Tubes and Steel/Plastic Drums Buried in IAG/USP Geophysical Test Site, Brazil.International Journal of Geosciences, 8, 647–658.
    [Google Scholar]
  27. Rodrigues, S.I., Porsani, J.L.
    [2006]. Caracterização GPR de tambores metálicos e plásticos estudo sobre o sítio controlado do IAG/USP.Revista Brasileira de Geofísica, 24, 157–168.
    [Google Scholar]
  28. Sandmeier, K.J.
    [2018]. ReflexW Version 8.5. Program for the Processing of Seismic, Acoustic or Electromagnetic Reflection, Refraction and Transmission Data.632 p.
    [Google Scholar]
  29. Santos, V.R.N.
    [2014]. Detecção e classificação automática de interferên-cias no subsolo com GPR utilizando redes neurais artificiais (RNAs): Estudo no SCGR do IAG/USP. Ph.D. Thesis, Universidade de São Paulo, Brazil.
    [Google Scholar]
  30. Santos, V.R.N., Al-Nuaimy, W., Porsani, J.L., Hirata, N.S.T., Alzubi, H.S.
    [2014]. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets.Journal of Applied Geophysics, 100, 32–43.
    [Google Scholar]
  31. Santos, V.R.N., Bortolozo, C.A., Porsani, J.L.
    [2017]. Joint Inversion of Apparent Conductivity and Magnetic Susceptibility to Characterize Buried Targets.IEEE Geoscience and Remote Sensing Letters, 14, 1–5.
    [Google Scholar]
  32. Santos, V.R.N., Almeida, E.R., Porsani, J.L., Teixeira, F., Soldovieri, F.
    [2018]. A Controlled-Site Comparison of Microwave Tomography and Time-Reversal Imaging Techniques for GPR Surveys.Remote Sensing, 10(214), 1–17.
    [Google Scholar]
  33. Yang, H.W., Yang, Z.K. and Pei, Y.K.
    [2014]. Ground-Penetrating Radar for Soil and Underground Pipelines Using the Forward Modelling Simulation Method.Optik International Journal for Light and Electron Optics, 125, 7075–7079.
    [Google Scholar]
  34. Yee, K.S.
    [1966]. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media.IEEE Transactions on Antennas and Propagation, 4, 302–307.
    [Google Scholar]
  35. Zeng, X., McMechan, G.A.
    [1997]. GPR Characterization of Buried Tanks and Pipes.Geophysics, 62(3), 797–806.
    [Google Scholar]
  36. Yilmaz, O.
    [1987]. Seismic data processing.Society of Exploration Geophysics Press, 526.
    [Google Scholar]
  37. Wang, T.P., Chen, C.C., Tong, L.T., Chang, P.Y., Chen, Y.C., Dong, T.H., Liu, H.C., Lin, C.P., Yang, K.H., Ho, C.J., Cheng, S.N.
    [2015]. Applying FDEM, ERT and GPR at a site with soil contamination: A case study.Journal of Applied Geophysics, 121, 21–30.
    [Google Scholar]
  38. Ward, S.H., Hohmann, G.W.
    [1987]. Electromagnetic Theory for Geophysical Applications. In: Nabighian, M.N. , Ed., Electromagnetic Methods in Applied Geophysics, 1, 131–311.
    [Google Scholar]
  39. Wijewardana, Y.N.S., Shilpadi, A.T., Mowjood, M.I.M., Kawamoto, K., Galagedara, L.W.
    [2017]. Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies.Environ Monit Assess, 189, 57–72.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.n0114
Loading
/content/journals/10.3997/1365-2397.n0114
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error