1887
Volume 1 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Urban soils are subject to strong variations in environmental conditions, such as water flow, solute transport and heat budget. The INTERURBAN research project has been set up to investigate the dynamics of water and solutes at urban locations with particular attention to spatial heterogeneity, organic soil substance, and soil‐biological transformation processes in the unsaturated zone. The objectives of INTERURBAN also define the tasks for geophysics: the development of non‐invasive procedures to map water distribution, water dynamics and important structural parameters at small scales. This paper focuses on the development of a geophysical methodology as a tool for soil research. Approaches to adapting geophysical methods for particular objectives in the framework of the project have been successful. Soil moisture could be derived from ground‐penetrating radar (GPR) in combination with timedomain reflectometry (TDR), high‐resolution direct‐current geoelectrics (DC on a dm scale) could be realized and a newly developed direct‐push spectral induced‐polarization (SIP) probe delivered high‐quality data. The resistivities and phases derived from the direct‐push SIP data correlate very well with the water content and decay times derived from nuclear magnetic resonance (NMR) measurements performed in the laboratory on a core from the same site. For DC geoelectrics and SIP, the layout of the sensors was a customized high‐resolution multi‐electrode configuration (a comb of electrodes with an electrode spacing of 5 cm) and the influence of the short electrode spacing (line electrode) was corrected for. For GPR metal plates were buried at a known depth to allow monitoring of the traveltime by means of water content. Furthermore, the ground wave has been used to determine the shallow water content which correlates well with TDR measurements. For surface NMR (SNMR), smaller loops and excitation intensities were used to enhance the resolution of the method for shallow depths.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2003008
2003-07-01
2020-06-07
Loading full text...

Full text loading...

References

  1. BillwitzK. and BreusteJ.1980. Anthropogene Bodenveränderungen im Stadtgebiet von Halle/Saale. Wissensch.~Z.~d.~Universi‐tät Halle, XXIX’80 M, H.4, 25–43.
    [Google Scholar]
  2. BlumeH.P. and SukoppH.1976. Ökologische Bedeutung anthropogener Bodenveränderungen. Schriftenreihe Vegetationskunde10, 75–79. Bonn‐Bad Godesberg.
    [Google Scholar]
  3. De‐KimpeC. and MorelJ.L.2000. Urban soil management;a growing concern. Soil Science165(1), 31–40.
    [Google Scholar]
  4. Du, Shuchun, 1996Determination of water content in the subsurface with the ground wave of ground penetrating radar. PhD thesis, Ludwig‐Maximilians‐University, Munich.
  5. FrancoisJ.P. and MolyneuxH.1997. Hydrocarbon fuels in urban ground waters and soils. In: Environmental Geology of Urban Areas (ed. Eyles‐Nicholas) 3, pp. 129–143. GEOtext, St. John’s, Canada.
    [Google Scholar]
  6. GreavesR.J., LesmesD.P., LeeJ.M., ToksözM. and Nafi 1996. Velocity variations and water content estimated from multi‐offset, ground‐penetrating radar. Geophysics61, 683–695.
    [Google Scholar]
  7. HübnerC.1999. Entwicklung hochfrequenter Meverfahren zur Boden‐ und Schneefeuchtebestimmung.PhD thesis, University of Karlsruhe, Germany.
    [Google Scholar]
  8. IgelJ.S., SchmalholzJ., AnschützH.R., WilhelmH., BrehW., HötzlH. and HübnerC.2001. Methods for determining soil moisture with the Ground Penetrating Radar (GPR). Proceedings of the Fourth International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, Weimar.
    [Google Scholar]
  9. LegchenkoA.V., ShushakovO.A.1998. Inversion of surface NMR data. Geophysics63, 75–84.
    [Google Scholar]
  10. KenyonW.E.1997. Petrophysical principles of applications of NMR logging. The Log Analyst, March‐April.
    [Google Scholar]
  11. MilitzerH. and WeberF.1998. Angewandte Geophysik, Vol. 2. Springer Verlag, Inc.
    [Google Scholar]
  12. MüllerM., KrügerU. and YaramanciU.2002a. Nuclear magnetic resonance (NMR) properties of unconsolidated rocks and synthetic samples. Proceedings of the 8th Annual Meeting of the Environmental and Engineering Geophysical Society, Aveiro, Portugal.
    [Google Scholar]
  13. MüllerM., MohnkeO.SchmalholzJ. and YaramanciU.2002b. Interurban ‐ Geophysical assessment of water dynamics and solute transport in urban soils. Proceedings of the 8th Annual Meeting of the Environmental and Engineering Geophysical Society, Aveiro, Portugal.
    [Google Scholar]
  14. PettryD.E. and ColemanC.S.1973. The decades of urban soil interpretations in Fairfax County, Virginia. Non‐agricultural applications of soil surveys. Geoderma10 (1‐2), 27–34.
    [Google Scholar]
  15. RadtkeU., ThönnessenM. and GerlachR.1997. Die Schwermetallverteilung in Stadtböden. Untersuchungen aus Duisburg und Düsseldorf. In: Geographische Rundschau49, 556–561.
    [Google Scholar]
  16. RengerM., AlailyF. and WessolekG.1998. Mobilität und Wirkung von Schadtstoffen in urbanen Böden. Bodenökologie und Bodengenese26, 3–22. Schriftenreihe der FG Bodenkunde + Standortkunde/Bodenschutz der TU Berlin.
    [Google Scholar]
  17. SchneiderJ.1994. Eignung DV‐gestützter Verfahren zur Bodenkundlichen Kartierung in urbanen Räumen.PhD Thesis, University of Essen, Germany.
    [Google Scholar]
  18. SenP.N., ScalaC. and CohenM.H.1981. A self‐similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics46, 781–795.
    [Google Scholar]
  19. Senatsverwaltung für Inneres
    Senatsverwaltung für Inneres1996. Bewertung für die Beurteilung stofflicher Belastung von Böden und Grundwasser in Berlin (Berliner Liste 1996). Amtsblatt für Berlin46, Jahrgang, Nr.15, 957–988.
    [Google Scholar]
  20. ShirovM., LegchenkoA. and CreerG.1991. A new direct non‐invasive groundwater detection technology for Australia. Exploration Geophysics22, 333–338.
    [Google Scholar]
  21. SperlC.1999. Erfassung der raum‐zeitlichen Variation des Bodenwassergehaltes in einem Agrarökosystem mit dem Ground‐Penetrating Radar. Forschungsverbund Agrarkosysteme München (FAM) Bericht37, Shaker Verlag, Aachen.
    [Google Scholar]
  22. StraleyC., RossiniD., VinegarH., TutunjianP. and MorrissC.1997. Core analysis by low‐field NMR. The Log Analyst38 (2).
    [Google Scholar]
  23. SukoppH. (Ed.) 1990. StadtökologieDas Beispiel Berlins.Berlin.
    [Google Scholar]
  24. ToppG.C., DavisJ.L. and AnnanA.P.1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resource Research16, 574–582.
    [Google Scholar]
  25. WessolekG. and FacklamM.1999. Aspekte zur Wassrbilanz versieglter Standort. In: Regenwasserversickerung und Bodenschutz, BVB‐Materialien, Band 2, 50–56. Erich Schmidt Verlag.
    [Google Scholar]
  26. YaramanciU., LangeG. and KnödelK.1999. Surface NMR within a geophysical study of an aquifer at Haldensleben (Germany). Geophysical Prospecting47, 923–943.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2003008
Loading
/content/journals/10.3997/1873-0604.2003008
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error