1887
Volume 4 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In this work, the effects of magnetic inclusions in a Mars‐like soil are considered with reference to the electromagnetic propagation features of ground‐penetrating radars (GPRs). Low‐frequency and time‐domain techniques, using L‐C‐R meters and TDR instruments, respectively, are implemented in laboratory experimental set‐ups in order to evaluate complex permittivity and permeability and wave velocity for different scenarios of a dielectric background medium (silica) with magnetic inclusions (magnetite). Attenuation and maximum detection ranges have also been evaluated by taking into account a realistic GPR environment, which includes the transmitting/receiving antenna performance and the complex structure of the subsurface. The analysis and the interpretation of these results shed new light on the significant influence of magnetic inclusions on the performance of Martian orbiting and rover‐driven GPRs.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2005026
2005-05-01
2020-05-26
Loading full text...

Full text loading...

References

  1. AnnanA.P.1992. Ground penetrating radar. Workshop Notes Sensors and Software, Ontario, Canada ([email protected]).
    [Google Scholar]
  2. BerthelierJ.J., NeyR., CiarlettiV., ReineixA., MartinatB., HamelinM., CostardF., PaillouP., DuvanaudC., NevejansD., KofmanW., TrotignonJ.G., GrandjeanG., ZamoraM. and NagyA.2003. GPR, a ground‐penetrating radar for the Netlander mission. Journal of Geophysical Research108(E4), 8027–8038.
    [Google Scholar]
  3. BoyntonW.V., FeldmanW.C., SquyresS.W., PrettymanT.H., BrucknerJ., EvansL.G., ReedyR.C., StarrR., ArnoldJ.R., DrakeD.M., EnglertA.J., MetzgerA.E., MitrofanovI., TrombkaJ.I., D’UstonC., WankeH., GasnaultO., HamaraD.K., JanesD.M., MarcialisR.L., MauriceS., MikheevaI., TaylorG.J., TokarR. and ShinoharaC.2002. Distribution of hydrogen in the near‐surface of Mars: evidence for subsurface ice deposits global distribution of neutrons from Mars: results from Mars Odyssey. Science297, 81–85.
    [Google Scholar]
  4. FeldmanW.C., BoyntonW.V., TokarR.L., PrettymanT.H., GasnaultO., SquyresS.W., ElphicR.C., LawrenceD.J., LawsonS.L., MauriceS., McKinneyG.W., MooreK.R. and ReedyR.C.2002. Global distribution of neutrons from Mars: results from Mars Odyssey. Science297, 75–78.
    [Google Scholar]
  5. Fellner‐FeldeggH.R.1969. The measurement of dielectrics in the time domain. Journal of Chemical Physics73, 616–623.
    [Google Scholar]
  6. GrantA.J., SchutzA. and CampbellB.A.2003. Ground‐penetrating radar as a tool for probing the shallow subsurface of Mars. Journal of Geophysical Research108(E4), 8024–8039.
    [Google Scholar]
  7. LeuschenC., KanagarantnamP., YoshikawaK., ArconeS. and GogineniP.2003. Design and field experiments a ground‐penetrating radar for Mars exploration. Journal of Geophysical Research108(E4), 8034–8035.
    [Google Scholar]
  8. MitrofanovI., AnmovD., KozyrevA., LitvakM., SaninA., Tret’yakovV., KrylovA., ShvetsovV., BoyntonW., ShinoharaC., HamaraD. and SaundersR.S.2002. Maps of subsurface hydrogen from high energy neutron detector, Mars Odyssey. Science297, 78–81.
    [Google Scholar]
  9. MooreJ.M.2004. Blueberry fields for ever. Nature428, 711–712.
    [Google Scholar]
  10. MorrisR.V., GoldenD.C., MingD.W., ShelferT.D., JorgensenL.C., BellJ.F., GraT.G.III and MertzmanS.A.2001. Phyllosilicate‐poor palagonitic dust from Mauna Kea Volcano (Hawaii): a mineralogical analogue for magnetic Martian dust?Journal of Geophysical Research106(E3), 5057–5083.
    [Google Scholar]
  11. OlhoeftG.1998. Electrical, magnetic, and geometric properties that determine Ground Penetrating Radar performance. In: Proceedings of 7th International Conference on Ground Penetrating Radar, GPR’98, The University of Kansas, Lawrence, KS, USA, 177–182.
    [Google Scholar]
  12. PettinelliE., CeretiA., GalliA. and BellaF.2002. Time domain reflectrometry: Calibration techniques for accurate measurement of the dielectric properties of various materials. Review of Scientific Instruments73, 3553–3562.
    [Google Scholar]
  13. PettinelliE., VannaroniG., CeretiA., PaolucciF., Della MonicaG., StoriniM. and BellaF.2003. Frequency and time domain permittivity measurements on solid CO2 and solid CO2‐soil mixtures as Martian soil simulants. Journal of Geophysical Research108(E4), 8029–8039.
    [Google Scholar]
  14. RobinsonD. A., JonesS. B., WraithJ. M., OrD. and FriedmanS. P. 2003. A review of advances in dielectric and electrical conductivity measurements in soils using Time Domain Reflectometry. Vadose Zone Journal2, 444–475.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2005026
Loading
/content/journals/10.3997/1873-0604.2005026
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error