1887
Volume 7 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Geophysical methods are progressive, non‐destructive but indirect techniques for characterization of soil properties and mapping of soil heterogeneities. Geophysical surveys for soil mapping lead generally to ambiguous results since geophysical parameters are influenced by several soil properties, e.g., organic content, clay content and bulk density.

The investigations presented here focus on the effect of different stages of organic content on DC‐geoelectrics and electromagnetic induction (EMI) at a long‐term fertilization experiment. This experiment gives, after 105 years running, an excellent opportunity to study the correlations between electrical resistivity, apparent electrical conductivity and soil parameters. Results from DC‐geoelectrical measurements (profile length 80–160 m, electrode distance 0.5 m) twice, in August after harvest and in January during black fallow period, are presented. Additionally electromagnetical investigations were conducted in January.

Correlations of resistivity and carbon input into the soil are significant and very strong; especially in January with but contradictive in summer and winter. The analysis of resistivity and apparent electrical conductivity is critical since bulk density and water storage capacity is influenced by fertilization and plant growth. Interpretation of a combination of DC‐geoelectrics and electromagnetical techniques on agricultural areas has to be done with respect to management aspects.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2008038
2008-11-01
2024-04-25
Loading full text...

Full text loading...

References

  1. AltermannM., RinklebeJ., MerbachI., KörschensM., LangerU. and HofmannB.2005. Chernozem ‐ Soil of the Year 2005. Journal of Plant Nutrition and Soil Science168, 725–740.
    [Google Scholar]
  2. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining Engineers146, 54–62.
    [Google Scholar]
  3. BantonO., SeguinM.K. and CimonM.A.1997. Mapping field‐scale physical properties of soil with electrical resistivity. Soil Science Society of America Journal161, 1010–1017.
    [Google Scholar]
  4. BarkerR.D.1989. Depth of investigation of collinear symmetrical four‐electrode arrays. Geophysics54, 1031–1037.
    [Google Scholar]
  5. BehrensT. and ScholtenT.2006. Digital soil mapping in Germany ‐ a review. Journal of Plant Nutrition and Soil Science169, 434–443.
    [Google Scholar]
  6. Blanco‐CanquiH. and LalR.2007. Soil structure and organic carbon relationships following 10 years of wheat straw management in no‐till. Soil and Tillage Research95, 240–254.
    [Google Scholar]
  7. ChelidzeT.L. and GueguenY.1999. Electrical spectroscopy of porous rocks: a review. I. Theoretical models. Geophysical Journal International137, 1–15.
    [Google Scholar]
  8. ChelidzeT.L., GueguenY. and RuffetC.1999. Electrical spectroscopy of porous rocks: a review. II. Experimental results and interpretation. Geophysical Journal International137, 16–34.
    [Google Scholar]
  9. CockxL., Van MeirvenneM. and De VosB.2007. Using the EM38DD Soil Sensor to Delineate Clay Lenses in a Sandy Forest Soil. Soil Science Society of America Journal4, 1314–1322.
    [Google Scholar]
  10. CorwinD.L., KaffkaS.R., HopmansJ.W., MoriY., van GroenigenJ.W., van Kessel, C.et al.2003. Assessment and field‐scale mapping of soil quality properties of a saline‐sodic soil. Geoderma114, 231–259.
    [Google Scholar]
  11. CorwinD.L. and LeschS.M.2005. Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture46, 11–43.
    [Google Scholar]
  12. DomschH. and GiebelA.2004. Estimation of soil textural features from soil electrical conductivity recorded using the EM38. Precision Agriculture5, 389–409.
    [Google Scholar]
  13. EigenbergR.A., DoranJ.W., NienaberJ.A., FergusonR.B. and Woodbury, B.L., 2002. Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop. Agriculture, Ecosystems and Environment88, 183–193.
    [Google Scholar]
  14. EigenbergR.A., NienaberJ.A., WoodburyB.L. and Ferguson, R.B.2006. Soil Conductivity as a Measure of Soil and Crop Status – A Four‐Year Summary. Soil Science Society of America Journal70, 1600–1611.
    [Google Scholar]
  15. FrankoU.1997. Modellierung des Umsatzes der organischen Bodensubstanz. Archiv für Acker‐ und Pflanzenbau und Bodenkunde41, 527–547.
    [Google Scholar]
  16. HedleyC.B., YuleI.Y., EastwoodC.R., ShepherdT.G. and ArnoldG.2004. Rapid identification of soil textural and management zones using electromagnetic induction sensing of soils. Australian Journal of Soil Research42, 389–400.
    [Google Scholar]
  17. JaynesD.B., NovakJ.M., MoormanT.B. and CambardellaC.A.1995. Estimating Herbicide Partition Coefficients from Electromagnetic Induction Measurements. Journal of Environmenal Quality24, 36–41.
    [Google Scholar]
  18. KachanoskiR.G., GregorichE.G. and van WesenbeeckI.J., 1988. Estimating spatial variations of soil water content using noncontacting electromagnetic inductive methods. Canadian Journal of Soil Science68, 715–722.
    [Google Scholar]
  19. KahleP., LeinweberP. and MenningP.1992. Zum Einfluß der organischen Substanz auf das physikalische Bodenverhalten. Agribiological Research45, 18–26.
    [Google Scholar]
  20. KayB.D.1998. Soil structure and organic carbon: a rewiew. In: Soil Processes and the Carbon Cycle. (eds. R.Lal, J.MKimble, E.Levine and V.A.Stewart) pp. 169–198. CRC Press.
    [Google Scholar]
  21. KnödelK., KrummelH. and LangeG.2005. Geophysik Handbuch zur Erkundung des Untergrundes von Deponien, 2. überarbeitete Auflage. Springer.
    [Google Scholar]
  22. KonertM. and VandenbergheJ.1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology44, 523–535.
    [Google Scholar]
  23. LalR.1997. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2‐enrichment. Soil and Tillage Research43, 81–107.
    [Google Scholar]
  24. LeinweberP., KahleP. and KörschensM.1997. Veränderungen physikalischer Bodenmerkmale im „Statischen Düngungsversuch” während einer Vegetationsperiode. Zeitschrift für Pflanzenernährung und Bodenkunde160, 323–326.
    [Google Scholar]
  25. LückE., EisenreichM. and DomschH.2002. Innovative Kartiermethoden für die teilschlagspezifische Landwirtschaft. In: Stoffdynamik in Geosystemen (eds O.Blumenstein and H.Schachtzabel ). Im Selbstverlag der Arbeitsgruppe Stoffdynamik in Geosystemen, Postdam.
    [Google Scholar]
  26. McNeillJ.D.1980. Electromagnetic terrain conductivity measurement at low induction numbers. Technical Note TN‐6, Geonics Ltd, Ontario, Canada.
    [Google Scholar]
  27. RubinY. and HubbardS.S.2005. Hydrogeophysics. Springer, Dordrecht, The Netherlands.
    [Google Scholar]
  28. RühlmannJ., KörschensM. and GraefeJ.2006. A new approach to calculate the particle density of soils considering properties of the soil organic matter and the mineral matrix. Geoderma130, 272–283.
    [Google Scholar]
  29. SchulmeisterM.K., ButlerJ.J., HealeyJ.M., ZhengL. and Wysocki, D.A.2003. Direct‐push electrical conductivity logging for high‐resolution hydrostratigraphic characterization. Ground Water Monitoring and Remediation23, 53–62.
    [Google Scholar]
  30. SudduthK.A., DrummondS.T. and KitchenN.R.2001. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture31, 239–264.
    [Google Scholar]
  31. SudduthK.A., KitchenN.R., WieboldW.J., BatchelorW.D., BolleroG.A., BullockD.G.et al.2005. Relating apparent electrical conductivity to soil properties across the north‐central USA. Computers and Electronics in Agriculture46, 203–237.
    [Google Scholar]
  32. TaylorJ.R.1997. An Introduction to Error Analysis. University Science Books, Sausalito, CA.
    [Google Scholar]
  33. TriantafilisJ. and LeschS.M.2005. Mapping clay content variation using electromagnetic induction techniques. Computers and Electronics in Agriculture46, 203–237.
    [Google Scholar]
  34. WerbanU., Hagrey alS.A. and RabbelW.2008. Monitoring of root zone water content in the laboratory by 2D geoelectrical tomography. Journal of Plant Nutrition and Soil Science171, 927–935.
    [Google Scholar]
  35. WilliamsB.G. and BakerG.C.1982. An electromagnetic induction technique for reconnaissance surveys of soil salinity hazards. Australian Journal of Soil Research20, 107–118.
    [Google Scholar]
  36. WilliamsB.G. and HoeyD.1987. The use of electromagnetic induction to detect the spatial variability in the salt and clay content of soils. Australian Journal of Soil Research25, 21–27.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2008038
Loading
/content/journals/10.3997/1873-0604.2008038
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error