1887
Volume 8 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Mining activity in the Iberian Pyrite Belt, on the south‐west of the Iberian Peninsula, has generated a great amount of mine tailing ponds, which once the extractive activity is finished, are abandoned and become a serious environmental problem. Here we present the results of applying the electrical resistivity tomography (ERT) technique to characterize the abandoned mine ponds in two sites: Monte Romero and Mina Concepción. ERT has allowed us to determine both the general geometry of the pond’s base and the maximum thickness of the mine tailings. In all cases, the resistivity contrast between the infilling and the bedrock is high enough to clearly define the bottom pond boundary. The low‐resistivity values (lower than ) obtained for the infilling are explained by the high concentration of pyrite in the tailings and the occurrence of acid waters. Whereas the Monte Romero mine pond is almost completely saturated with water, in Mina Concepción it has been possible to identify the presence of inner acid water flows, the outlet of which through the damaged dyke originates a spilling of acid waters to the Odiel River. No low‐resistivity water flows through the base of the ponds into the bedrock have been observed, indicating a good isolation of the base of the studied mine ponds.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2009052
2009-09-01
2024-04-24
Loading full text...

Full text loading...

References

  1. AlmodóvarG.R. and SáezR.2004. Los sulfuros masivos de la Faja Pirítica Ibérica. In: Geología de España (ed. J.A.Vera ), pp. 207–209. SGE‐IGME, Madrid.
    [Google Scholar]
  2. AracilE., PorresJ.A., FazA., Martínez‐PagánP., MaruriU. and VallésJ.2006. Balsas mineras abondonadas y balsas de purines: dos problemas medioambientales abordables mediante tomografía eléctra.III Congreso de Ingeniería Civil, Territorio y Medio Ambiente. www.ubu.es/investig/aulavirtual/Posters/Balsas.pdf.
    [Google Scholar]
  3. BernardJ.2003. Short note on the depth of investigation of electrical methods.IRIS Instruments, Orleans, France.
    [Google Scholar]
  4. BlancoA., LloretA., CarreraJ., SaaltinkM.W., AceroP., AyoraC. and NietoJ.M.2003. Monitorización del movimiento del agua a través de una balsa de lodos residuales mineros en la Faja Pirítica Ibérica (SO de la Península Ibérica).Jornadas Luso‐Españolas sobre Aguas Subterráneas en el Sur de la Península Ibérica, Faro, Portugal, Expanded Abstracts, 1–10.
    [Google Scholar]
  5. BuselliG., HwangH.S. and LuK.1998. Minesite groundwater contamination mapping. Exploration Geophysics29, 296–300.
    [Google Scholar]
  6. BuselliG. and LuK.2001. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. Journal of Applied Geophysics48, 11–23.
    [Google Scholar]
  7. CampbellD.L. and FittermanD.V.2000. Geoelectrical methods for investigating mine dumps. 5th International Conference on Acid Rock Drainage (ICARD2000), Society for Mining, Metallurgy, and Exploration, Inc., Denver, Colorado, 1513–1523.
    [Google Scholar]
  8. Consejería de Medio Ambiente
    Consejería de Medio Ambiente1997. Medio Ambiente en Andalucía. Informe 1996.Junta de Andalucía, Sevilla.
    [Google Scholar]
  9. DahlinT. and LokeM.H.1997. Quasi‐3D resistivity imaging‐mapping of three dimensional structures using two dimensional DC resistivity techniques. Proceedings of the 3rd Meeting of the Environmental and Engineering Geophysical Society, 143–146.
    [Google Scholar]
  10. Faz‐CanoA., Martínez‐PagánP., AracilE. and MaruriU.2006. Aplicación de la tomografía eléctrica al estudio de los depósitos de estériles mineros “El Lirio” y “Brunita” (Murcia). In: Los residuos minero‐metalúrgicos en el medio ambiente (eds R.Rodríguez and A.García Cortés ), pp. 89–110. IGME, Madrid.
    [Google Scholar]
  11. Gómez‐OrtizD., Martín‐VelázquezS., Martín‐CrespoT., MárquezA., LilloJ., LópezI.et al.2007. Joint application of ground penetrating radar and electrical resistivity imaging to investigate volcanic materials and structures in Tenerife (Canary Islands, Spain). Journal of Applied Geophysics62, 287–300.
    [Google Scholar]
  12. IGME
    IGME1986. Inventario nacional de balsas y escombreras.Madrid.
    [Google Scholar]
  13. KurasO., BanksV., Palumbo‐RoeB. and KlinckB.2008. Geophysical imaging of a tailings lagoon at an abandoned lead‐zinc mine in the central wales orefield, UK. Near Surface meeting, Krakow, Poland, Expanded Abstracts.
    [Google Scholar]
  14. LokeM.H.2004. Tutorial: 2‐D and 3‐D Electrical Imaging Surveys.Geotomo Software, Malaysia.
    [Google Scholar]
  15. LokeM.H., AcworthI. and DahlinT.2003. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics34, 182–187.
    [Google Scholar]
  16. LokeM.H. and BarkerR.D.1995. Least‐square deconvolution of apparent resistivity pseudo‐sections. Geophysics60, 499–523.
    [Google Scholar]
  17. LokeM.H. and BarkerR.D.1996. Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method. Geophysical Prospecting44, 131–152.
    [Google Scholar]
  18. LópezM., GonzálezI. and RomeroA.2007. Trace elements contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, SW Spain). Environmental Geology54, 805–818. doi:10.1007/s00254‐007‐0864‐x
    [Google Scholar]
  19. LunarR., MorenoT., LombarderoM., RegueiroM., López‐VeraF., Martínez del OlmoW.et al.2002. Economic and environmental geology. In: The Geology of Spain (eds W.Gibbons and M.T.Moreno ), pp. 473–510. Geological Society of London.
    [Google Scholar]
  20. Martínez PagánP.2006. Aplicación de diferentes técnicas no destructivas de prospección geofísica a problemas relacionados con contaminación ambiental producida por diferentes actividades antrópicas en la Región de Murcia. PhD thesis, Universidad Politécnica de Cartagena.
    [Google Scholar]
  21. Martínez‐PagánP., Faz‐CanoA., AracilE. and ArocenaJ.M. (2009). Electrical resistivity tomography revealed the spatial chemical properties of mine tailings ponds in the Sierra Minera (SE Spain). Journal of Environmental & Engineering Geophysics14, 63–76.
    [Google Scholar]
  22. MerkelR.H.1972. The use of resistivity techniques to delineate acid mine drainage in ground water. Ground Water10, 38–42.
    [Google Scholar]
  23. NiederleithingerE. and KruschwitzS.2005. Multi‐channel spectral induced polarization (SIP) measurements on tailings dams.Near Surface meeting, Palermo, Italy, Expanded Abstracts.
    [Google Scholar]
  24. PainterM.A., LavertyB., StoertzM.W. and GreenD.H.2000. Resistivity imaging of a partially reclaimed coal tailings pile. In: Symposium on the Application of Geophysics to Engineering and Environmental Problems (eds M.H.Powers , L.Cramer and I.Abou‐Bakr ), pp. 679–688. EEGS.
    [Google Scholar]
  25. Pérez‐LópezR., CamaJ., NietoJ.M. and AyoraC.2007. The iron‐coating role on the oxidation kinetics of a pyritic sludge doped with fly ash. Geochimica et Cosmochimica Acta71, 1921–1934. doi:10.1016/j.gca.2007.01.019
    [Google Scholar]
  26. ReynoldsJ.M.1997. An Introduction to Applied and Environmental Geophysics.John Wiley and Sons.
    [Google Scholar]
  27. SasakiY.1992. Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting40, 453–464.
    [Google Scholar]
  28. SjodahlP., DahlinT. and JohanssonS.2005. Using resistivity measurements for dam safety evaluation at Enemossen tailings dam in southern Sweden. Environmental Geology49, 267–273.
    [Google Scholar]
  29. ŠumanovacF.2006. Mapping of thin sandy aquifers by using high resolution reflection seismics and 2‐D electrical tomography. Journal of Applied Geophysics58, 144–157.
    [Google Scholar]
  30. TelfordW.M., GeldartL.P., SheriffR.E. and KeysD.A.1990. Applied Geophysics.Cambridge University Press.
    [Google Scholar]
  31. TornosF.2006. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geology Reviews28, 259–307.
    [Google Scholar]
  32. YuvalD. and OldenburgD.W.1996. DC resistivity and IP methods in acid mine drainage problems: results from the Copper Cliff mine tailings impoundments. Journal of Applied Geophysics34, 187–198.
    [Google Scholar]
  33. ZogalaB., PierwolaJ., DubielR. and CabalaJ.2008. Geoelectrical survey in the area of a long‐lasting Zn‐Pb waste storage. Near Surface meeting, Krakow, Poland, Expanded Abstracts.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2009052
Loading
/content/journals/10.3997/1873-0604.2009052
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error