1887
Volume 8, Issue 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

A multi‐method geophysical survey was carried out with the aim of reassessing the structure of the Rochechouart‐Chassenon astrobleme and the geometry of the impact‐related formations, referred to as fallout breccias, in the vicinity of Chassenon. Gravity data extracted from the BRGM InfoTerre database were reprocessed and revealed both the shape of the astrobleme and the presence of a small negative gravity anomaly close to Chassenon, due to the low density of impact‐related rocks; a 2D gravity model across the fallout deposits was provided. Geological settings, well‐logging and geophysical soundings (direct current (DC), time‐domain electromagnetic (TDEM) and frequency‐domain electromagnetic (FDEM)) were carried out on the fallout breccias at Chassenon. The 1D resistivity models based on TDEM and DC soundings, resulting from a mutually constrained inversion and coupled with 1D models of FDEM data, were constrained by borehole data and provided 2D resistivity models across the fallout deposits of Chassenon. The combination of these methods allows the description of both the impact‐related rocks geometry and the global structure of fallout breccia remains at Chassenon. The study also shows that the fallout breccia has a complex structure, consisting of thin layers of lithic breccia and suevite, the total thickness of which is larger at Chassenon than previously estimated by means of geological analysis.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2010011
2010-04-01
2024-04-25
Loading full text...

Full text loading...

References

  1. AbbottD. and MazumderR.2007. Using magnetic susceptibility to find Precambrian impact ejecta: A proposal. Gondwana Research12, 571–575.
    [Google Scholar]
  2. AukenE., PellerinL. and SørensenK.2001b. Mutually constrained inversion (MCI) of electrical and electromagnetic data. 71st SEG meeting, San Antonio, Texas, USA, Expanded Abstracts, 1455–1458.
    [Google Scholar]
  3. AukenE., SørensenK.I., DanielsenJ.E. and PellerinL.2001a. Mutually constrained inversion (MCI) of electrical and electromagnetic data from Skaro, Denmark. EEGS‐ES meeting, 2–7 September, Birmingham, UK, Expanded Abstracts, 94–95.
    [Google Scholar]
  4. BealsC.S., InnesM.J.S. and RottenbergJ.A.1963. Fossil meteorite craters. In: The Solar System IV (eds B.M.Middlehurst and G.P.Kuiper), pp. 235–284. University of Chicago Press.
    [Google Scholar]
  5. BenderitterY. and MartinetJ.1995. Test géophysique dans la carrière de Champagnac (87600 Rochechouart). Rapport du Centre de Recherches Géophysiques n°95‐012, Garchy (in French).
    [Google Scholar]
  6. BischoffL. and OskierskiW.1987. Fractures, pseudotachylite veins and breccia dikes in the crater floor of the Rochechouart impact structure, SW‐France, as indicators of crater forming processes. In: Research in Terrestrial Impact Structures (ed. J.Pohl ), pp. 5–29. Vieweg, Germany.
    [Google Scholar]
  7. Campos‐EnríquezJ.O., Morales‐RodríguezH.F., Domínguez‐MéndezF. and BirchF.S.1998. Gauss’s theorem, mass deficiency at Chicxulub crater (Yucatan, Mexico) and the extinction of the dinosaurs. Geophysics63, 1585–1594.
    [Google Scholar]
  8. ChèvremontP., Floc’hJ.P., MénilletF., StussiJ.M., DelbosR., SauretB.et al. 1996. Carte géologique de la France à 1:50000, feuille 687 Rochechouart. BRGM, Orléans (in French).
    [Google Scholar]
  9. ChristensenN.B.2000. Difficulties in determining electrical anisotropy in subsurface investigations. Geophysical Prospecting48, 1–19.
    [Google Scholar]
  10. ChristiansenA.V., AukenE., FogedN. and SørensenK.I.2007. Mutually and laterally constrained inversion of CVES and TEM data: A case study. Near Surface Geophysics5, 115–123.
    [Google Scholar]
  11. FrischknechtF.C., LabsonV.F., SpiesB.R. and AndersonW.L.1991. Profiling methods using small sources. In: Electromagnetic Methods in Applied Geophysics, Vol. 2 (ed. M.N.Nabighian ), pp. 105–170. SEG.
    [Google Scholar]
  12. HenkelH.1992. Geophysical aspects of meteorite impact craters in eroded shield environments, with special emphasis on electric resistivity. Tectonophysics216, 63–89.
    [Google Scholar]
  13. HenkelH. and GuzmánM.1977. Magnetic features of fracture zones. Geoexploration15, 173–181.
    [Google Scholar]
  14. HenkelH., ReimoldW.U. and KoeberlC.2002. Magnetic and gravity model of the Morokweng impact structure. Journal of Applied Geophysics49, 129–147.
    [Google Scholar]
  15. HornW. and El GoresyA.1980. The Rochechouart crater in France: Stony and not an iron meteorite?Lunar and Planetary Science11, 468–470.
    [Google Scholar]
  16. KelleyS.P. and SprayJ.G.1997. A late Triassic age for the Rochechouart impact structure, France. Meteoritics and Planetary Science32, 629–636.
    [Google Scholar]
  17. KentD.V., CramerB.S., LanciL., WangD., WrightJ.D. and Van der VooR.2003. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotropic excursion. Earth and Planetary Science Letters211, 13–26.
    [Google Scholar]
  18. KoeberlC., ShukolyukovA. and LugmairG.L.2007. Chromium isotopic studies of terrestrial impact craters: Identification of meteoritic components at Bosumtwi, Clearwater East, Lappajärvi, and Rochechouart. Earth and Planetary Science Letters256, 534–546.
    [Google Scholar]
  19. KrautF. and FrenchB.M.1971. The Rochechouart meteorite impact structure, France: Preliminary geological results. Journal of Geophysical Research76, 5407–5413.
    [Google Scholar]
  20. KrautF., ShortN.M. and FrenchB.M.1969. Preliminary report on a probable meteorite impact structure near Chassenon, France. Meteoritics4, 490.
    [Google Scholar]
  21. LambertP.1974. La structure d’impact de météorite géante de Rochechouart.PhD thesis, University of Orsay.
    [Google Scholar]
  22. LambertP.1975. Nickel enrichment of impact melt rocks from Rochechouart. Preliminary results and possibility of meteoritic contamination. Meteoritics10, 433–436.
    [Google Scholar]
  23. LambertP.1977. The Rochechouart crater: shock zoning study. Earth and Planetary Science Letters35, 258–268.
    [Google Scholar]
  24. LambolezB.1971. Compte rendu de reconnaissance de la structure d’impactites de Rochechouart. Rapport BRGM, 71 GHP 006, Orléans, France (in French).
    [Google Scholar]
  25. MarmetE.2002. Reconnaissance de l’occupation ancienne des sols sur le site de Chassenon (Charente) par mesures de susceptibilité magnétique à large maille. Rapport de prospection, Conseil Général de la Charente, France (in French)
    [Google Scholar]
  26. McNeillJ.D.1980. Electromagnetic terrain conductivity measurement at low induction numbers. Technical Note TN‐6, Geonics Ltd, Ontario, Canada.
    [Google Scholar]
  27. OrmöJ. and BlomqvistG.1996. Magnetic modelling as a tool in the evaluation of impact structures, with special reference to the Tvären Bay impact crater, SE Sweden. Tectonophysics262, 291–300.
    [Google Scholar]
  28. OrmöJ., SturkellE., BlomqvistG. and TörnbergR.1999. Mutually constrained geophysical data for the evaluation of a proposed impact structure: Lake Hummeln, Sweden. Tectonophysics311, 155–177.
    [Google Scholar]
  29. OskierskiW. and BischoffL.1983. Petrographic, geochemical and structural studies on impact breccia dikes of the Rochechouart impact structure, SW France. Lunar and Planetary Science14, 584–585.
    [Google Scholar]
  30. PlesciaJ.B.1996. Gravity investigation of the Manson impact structure, Iowa. In: The Manson Impact Structure, Iowa: Anatomy of an Impact Crater, Vol. 302 (eds C.Koeberl and R.R.Anderson ), pp. 89–104. Geological Society America.
    [Google Scholar]
  31. PohlJ. and AngenheisterG.1969. Anomalien des Erdmagnetfeldes und Magnetisierung der Gesteine im Nördlinger Ries. Geologica Bavarica61, 327–336 (in German).
    [Google Scholar]
  32. PohlJ., ErnstsonK. and LambertP.1978. Gravity measurements in the Rochechouart impact structure (France). Meteoritics13, 601–604.
    [Google Scholar]
  33. PohlJ. and SoffelH.1971. Paleomagnetic age determination of the Rochechouart impact structure (France). Zeitschrift für Geophysik37, 857–866.
    [Google Scholar]
  34. ReimoldW.U., BischoffL., OskierskiW. and SchaferH.1984. Genesis of pseudotachylite veins in the basement of the Rochechouart impact crater, France. I. Geological and petrographical evidence. Lunar and Planetary Science15, 683–684.
    [Google Scholar]
  35. ReimoldW.U. and OskierskiW.1987. The Rb‐Sr‐age of the Rochechouart impact structure, France, and geochemical constraints on impact melt‐target rock‐meteorite compositions. In: Research in Terrestrial Impact Structures (ed. J.Pohl ), pp. 94–114. Vieweg, Germany.
    [Google Scholar]
  36. TagleR., StöfflerD., ClaeysP. and ErzingerJ.2003. A non‐magnetic iron meteorite as impactor for the Rochechouart crater. 34th Annual Lunar and Planetary Science Conference, League City, Texas, USA, Expanded Abstracts, 1835.
    [Google Scholar]
  37. WagnerG.A. and StorzerD.1975. The age of the Rochechouart structure. Meteoritics10, 503–504.
    [Google Scholar]
  38. ZemanekJ.R., GlennE.E., NortonL.J. and CaldwellR.L.1970. Formation evaluation by inspection with the borehole televiewer. Geophysics35, 254–269.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2010011
Loading
/content/journals/10.3997/1873-0604.2010011
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error