1887
Volume 8, Issue 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

The Ebersbrunn diatreme near Ebersbrunn, western Saxony, Germany, causes an elliptical Bouguer anomaly of about –2.5 m Gal, which covers an area of approximately 2.2 km × 2 km and an elliptical magnetic anomaly with values between –250 nT and 1000 nT about half a kilometre smaller in diameter and situated within the southern part of the Bouguer anomaly. Considering magnetic susceptibility and density values determined from core samples of the diatreme, a symmetrical, cone‐shaped body with an oval surface outcrop of 2 km × 1.5 km and a dip angle of the slopes of about 82° is modelled. It comprises a central structure with a diameter of 800–900 m and susceptibility values up to 9000*10−6 SI higher and densities up to 220 kg/m3 lower than the surrounding chimney. Additionally, susceptibility within the body increases with depth and decreases with the degree of weathering. The geometry can clearly be associated with the diatreme of a maar‐diatreme‐volcano. Regarding the petrographic information (the occurrence of as juvenile phase, the basaltoid character of the occurring ground mass of magmatic origin and 80% wall rock content) and the final geophysical model, the Ebersbrunn structure can definitely be regarded as the partially eroded remnant (diatreme and root zone) of a maar‐diatreme‐volcano. The association of earthquake swarms in intraplate regions of intersecting fractures and volcanism has led to renewed interest in the eroded maar‐diatreme‐volcano.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2010020
2010-06-01
2020-05-30
Loading full text...

Full text loading...

References

  1. BankwitzP., SchneiderG., KämpfH. and BankwitzE,2003. Structural characteristics of epicentral areas in Central Europe. Study case Cheb Basin (Czech Republic). Journal of Geodynamics35, 5–32.
    [Google Scholar]
  2. BergerH.‐J.2008. Eruptivbrekzie von Ebersbrunn. In: Geologie von Sachsen (ed. H.Walter ), pp. 482–483. E. Schweizerbart (in German).
    [Google Scholar]
  3. BräuerK., KämpfH., NiedermannS., StrauchG. and Tesař J. 2008. The natural laboratory NW Bohemia – Comprehensive fluid studies between 1992 and 2005 to trace geodynamic processes. Geochemistry, Geophysics, Geosystems9, Q04018. doi:10.1029/2007GC001921
    [Google Scholar]
  4. BräuerK., KämpfH. and StrauchG.2009. Earthquake swarms in non‐volcanic regions: What fluids have to say. Geophysical Research Letters36, L17309.
    [Google Scholar]
  5. BräuerK., KämpfH., StrauchG. and WeiseS.M.2003. Isotopic evidence (3He/4He, 13CCO2) of fluid‐triggered intraplate seismicity. Journal of Geophysical Research108, 2070. doi:10.1029/2002JB002077
    [Google Scholar]
  6. FörsterH.‐J., TischendorfG., TrumbullB. and GottesmannB.1999. Late‐collisional granites in the Variscan Erzgebirge, Germany. Journal of Petrology40, 1613–1645.
    [Google Scholar]
  7. GabrielG.2003. Die gravimetrische Anomalie von Baruth (Sachsen) – Aussagen über die Struktur eines verdeckten Maars. Zeitschrift für angewandte Geologie1, 9–25 (in German).
    [Google Scholar]
  8. Geological Survey of Canada
    Geological Survey of Canada2006. Geomagnetism, magnetic field calculator. http.//www.geolab.nrcan.gc.ca/geomag/apps/mfcal_e.php, accessed 15.12.2006.
  9. GötzeH.‐J. and LahmeyerB.1988. Application of three‐dimensional interactive modelling in gravity and magnetics. Geophysics53, 1096–1108.
    [Google Scholar]
  10. GrünthalG.1989. About the history of earthquake activity in the focal region Vogtland/Western Bohemia. In: Monitoring and Analysis of the Earthquake Swarm 1985/86 in the Region Vogtland/Western Bohemia (ed. P.Bormann ), pp. 165–193. Akademie der Wissenschaften der DDR.
    [Google Scholar]
  11. HemmannA., MeierT., JentzschG. and ZiegertA.2003. Similarity of waveforms and relative relocalization of the earthquake swarm 1997/1998 near Werdau. Journal of Geodynamics35, 191–208.
    [Google Scholar]
  12. HofmannY., JahrT. and JentzschG.2003. Three‐dimensional gravimetric modelling to detect the deep structure of the region Vogtland/ NW‐Bohemia. Journal of Geodynamics35, 209–220.
    [Google Scholar]
  13. Ibs von SehtM., PlenefischT. and KlingeK.2008. Earthquake swarms in continental rifts – A comparison of selected cases in America and Europe. Tectonophysics452, 66–77.
    [Google Scholar]
  14. JägerW.1964. Ergebnisbericht Ebersbrunn I. VEB Geophysik Leipzig, Wismut GmbH, Geologisches Archiv Sachsen, Reg.‐Nr. 917/4.
  15. KämpfH.2002. Comparison between the ultramafic Delitzsch complex and the active magmatic evolution in the western part of the Eger Rift. Interaction between fracture tectonics, migration of magmatic fluids and the structure of the seismogenic crust. Proceedings of the 20th Tectonomechanics Colloquium, Mitteilungen Naturwissenschaftlicher Verlag Steiermark, 14–15.
    [Google Scholar]
  16. KornM., FunkeS. and WendtS.2008. Seismicity and seismotectonics of west Saxony, Germany – New insights from recent seismicity observed with the Saxonian network. Studia Geophysica et Geodaetica52, 479–492.
    [Google Scholar]
  17. KronerC., JahrT., KämpfH. and GeisslerW.H.2006. Der Tuffschlot bei Ebersbrunn/Westsachsen, der partiell erodierte Rest eines Maar‐Diatrem Vulkans. Zeitschrift für Geologische Wissenschaften34, 143–157 (in German).
    [Google Scholar]
  18. KurzJ.H., JahrT. and JentzschG.2004. Earthquake swarm examples and a look at the generation mechanism of the Vogtland/Western Bohemian earthquake swarms. Physics of the Earth and Planetary Interiors142, 75–88.
    [Google Scholar]
  19. LFUG
    LFUG1996. Seismologische Übersichtskarte des Freistaates Sachsen 1:400000, 1.Ausgabe Landesamt für Umwelt und Geologie, Freiberg.
    [Google Scholar]
  20. LorenzV.1986. On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bulletin of Volcanology48, 265–274.
    [Google Scholar]
  21. LorenzV.2003. Maar‐diatreme volcanoes, their formation and their setting in hard‐rock or soft‐rock environments. GeoLines15, 72–83.
    [Google Scholar]
  22. LorenzV. and KurszlaukisS.2007. Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar‐diatreme volcanoes. Journal of Volcanology and Geothermal Research159, 4–32.
    [Google Scholar]
  23. LorenzV., SuhrP. and GothK.2003. Maar‐Diatrem‐Vulkanismus – Ursachen und Folgen. Die Guttauer Vulkangruppe in Ostsachsen als Beispiel für komplexe Zusammenhänge. Zeitschrift für Geologische Wissenschaften31, 267–312.
    [Google Scholar]
  24. MacnaeC.J.1995. Applications of geophysics for the detection of kimberlites and lamproites. Journal of Geochemical Exploration53, 213–243.
    [Google Scholar]
  25. ModalekW., SeifertG. and WeißS.2009. Die besten Funde Europas: Edle Zirkone aus dem sächsischen Vogtland. Lapis34, 13–26 (in German).
    [Google Scholar]
  26. MrlinaJ., KämpfH., KronerC., MingramJ., StebichM., BrauerA., GeisslerW.H.KallmeyerJ., MatthesH. and SeidelM.2009. Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys. Journal of Volcanology and Geothermal Research182, 97–112.
    [Google Scholar]
  27. NeunhöferH. and HemmannA.2005. Earthquake swarms in the Vogtland/Western Bohemian region. Spatial distribution and magnitude‐frequency distribution as an indication of the genesis of swarms?Journal of Geodynamics39, 361–385.
    [Google Scholar]
  28. PaolettiV., SecomandiM., FediM., FlorioG. and RapollaA.2005. The integration of magnetic data in the Neapolitan volcanic district. Geosphere1, 85–96.
    [Google Scholar]
  29. ParésJ.M., MartíJ. and GarcésM.1993. Thermoremanence in red sandstone clasts and emplacement temperature of a quaternary pyroclastic deposit (Catalan Volcanic Zone, NE Spain). Studia Geophysica et Geodaetica37, 401–414.
    [Google Scholar]
  30. SarmaB.S.P., VermaB.K. and SatyanarayanaS.V.1999. Magnetic mapping of Majhgawan diamond pipe of Central India. Geophysics64, 1735–1739.
    [Google Scholar]
  31. SchmidtS. and GötzeH.‐J.1999. Integration of data constraints and potential field modelling – An example from southern Lower Saxony, Germany. Physics and Chemistry of the Earth (A)24, 191–196.
    [Google Scholar]
  32. ŠpičákA.2000. Earthquake swarms and accompanying phenomena in intraplate regions. A review. Studia Geophysica et Geodaetica44, 89–106.
    [Google Scholar]
  33. TorgeW.1989. Gravimetry. De Gruyter.
    [Google Scholar]
  34. TschudinowskiW.N., KunzH., KarwelisG.A., GrebenikP.P. and DutschM.1983. Bericht über die Ergebnisse der revisionsthematischen Sucharbeiten im Nordvogtland in den Jahren 1978‐1982, SDAG Wismut, Teil I, Teil II (Anlagen). Wismut GmbH, Geologisches Archiv Sachsen, Reg.‐Nr. 54601/I.
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2010020
Loading
/content/journals/10.3997/1873-0604.2010020
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error