1887
Volume 10 Number 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

The analysis of low‐frequency spectral induced polarization data involves the determination of the distribution of relaxation times either from time‐domain or frequency domain measurements. The classical approach is to assume a simple transfer function (e.g., a Cole‐Cole function) and to determine, by a deterministic or a stochastic fitting procedure, the parameters of this transfer function (for instance the four Cole‐Cole parameters). Some other methods (based on optimization) have been developed recently avoiding the choice of a specific transfer function that can bias data interpretation. We have developed a new approach based on the Fourier transform also avoiding the use of a specific analytical transfer function. The use of the Fourier transform is a classical approach to retrieve the kernel of a Fredholm integral equation of the first kind (especially in potential field theory) and this corresponds exactly to the problem we want to solve. We adapt the Fourier transform approach to retrieve the distribution of the relaxation times (for instance to process low‐frequency induced polarization data). Problems resulting from the use of this approach with noisy data are prevented by using Wiener filtering. As far as induced polarization is concerned, we found that it is necessary to fit the high‐frequency dielectric contribution of the spectra and to remove this contribution from the quadrature conductivity data before inverting the distribution of the relaxation times. Our approach is benchmarked with analytical pair solutions and then tested by using synthetic and experimental data sets.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2012004
2012-02-01
2020-04-05
Loading full text...

Full text loading...

References

  1. AgarvalV.2003. Total variation regularization and L‐curve method for the selection of regularization parameter. ECE 599. <http://imaging.utk.edu/people/former/vivek/EdgeTV.pdf>.
  2. AndersonA.L., CampbellD.L. and BeanlandS.2001. Laboratory measurements of electrical properties of composite mine dump samples from Colorado and New Mexico. US Geological Survey Open‐file Report 01‐158, 55p.
    [Google Scholar]
  3. BarsoukovE. and MacDonaldJ.R.2005. Impedance Spectroscopy Theory, Experiment, and Applications, Second Edition. Edited by John Wiley & Sons, Hoboken, 606 pp.
    [Google Scholar]
  4. BinleyA., SlaterL.D., FukesM. and CassianiG.2005. Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resources Research41, W12417.
    [Google Scholar]
  5. BörnerF.D., SchopperW. and WellerA.1996. Evaluation of transport and storage properties in the soils and groundwater zone from induced polarization measurements. Geophysical Prospecting44(4), 583–601. Doi:10.1111/j.1365‐2478.1996.tb00167.x.
    [Google Scholar]
  6. CampbellD.L. and HortonR.J.2000. Graphs and tables used to describe electrical measurements of samples of unconsolidated material. US Geological Survey Open‐file Report 00‐377, 16p.
    [Google Scholar]
  7. ChenJ., KemnaA. and HubbardS.S.2008. A comparison between Gauss‐Newton and Markov‐chain Monte Carlo‐based methods for inverting spectral induced‐polarization data for Cole Cole parameters. Geophysics73(6), F247–F259.
    [Google Scholar]
  8. ColeK.S. and ColeR.H.1941. Dispersion and absorption in dielectrics. I. Alternating current characteristics. Journal of Chemical Physics9, 341–351.
    [Google Scholar]
  9. CosenzaPh., GhorbaniA., FlorschN. and RevilA.2007. Effects of drying on the low‐frequency electrical properties of Tournemire argillites. Pure and Applied Geophysics164, 2043–2066.
    [Google Scholar]
  10. CosenzaP., GhorbaniA., RevilA., ZamoraM., SchmutzM., JougnotD. and FlorschN.2008. A physical model of the low‐frequency electrical polarization of clay rocks. Journal of Geophysical Research113, B08204. Doi:10.1029/2007JB005539.
    [Google Scholar]
  11. DavidsonD.W. and ColeR.H.1950. Dielectric relaxation in glycerine. Journal of Chemical Physics18, 1417.
    [Google Scholar]
  12. DebyeP. and FalkenhagenH.1928. Dispersion of the Conductivity and Dielectric Constants of Strong Electrolytes. Phys. Z.29, 121–132, 401–426.
    [Google Scholar]
  13. DiasC.A.2000. Developments in a model to describe low‐frequency electrical polarization of rocks. Geophysics65(2), 437–451.
    [Google Scholar]
  14. DukhinS.S. and ShilovV.N.2002. Nonequilibrium electric surface phenomena and extended electrokinetic characterization of particles In:Interfacial Electrokinetics and Electrophoresis (ed. A.V.Delgado ), pp. 991. Surfactant Science Series 106, 55–85.
    [Google Scholar]
  15. FixmanM.1980. Charged macromolecules in external fields. I: The sphere. Journal of Chemical Physics72, 5177–5186.
    [Google Scholar]
  16. FuossR.M. and KirkwoodJ.G.1941. Dipole moments in Polyvinyl Chloride‐Diphenyl systems. In: Electrical properties of solids. VIII. Journal of the American Chemical Society63, 385–394.
    [Google Scholar]
  17. GhorbaniA., CamerlynckC., FlorschN., CosenzaP., TabbaghA. and RevilA.2007. Bayesian inference of the Cole‐Cole parameters from time and frequency domain induced polarization. Geophysical Prospecting, 55(4), 589–605. Doi: 10.1111/j.1365‐2478.2007.00627.x.
    [Google Scholar]
  18. GhorbaniA., CosenzaP., RevilA., ZamoraM., SchmutzM., FlorschN. and JougnotD.2009. Non‐invasive monitoring of water content and textural changes in clay‐rocks using spectral induced polarization: A laboratory investigation. Applied Clay Science43, 493–502.
    [Google Scholar]
  19. GrissemanC.1971. Examination of the frequency‐dependent conductivity of ore‐containing rock on artificial model, Scientific Rep. no. 2. Electronics laboratory University of Innsbruck, Austria. Hallof, P.G., 1965.
    [Google Scholar]
  20. HansenP.C. and O’Leary, D.P.1993. The use of the L‐curve in the regularization of discrete ill‐posed problems. SIAM Journal on Scientific Computing14, 1487–1503.
    [Google Scholar]
  21. HördtA., BlaschekR., KemnaA. and ZisserN.2007. Hydraulic conductivity estimation from induced polarisation data at the field scale. The Krauthausen case history. Journal of Applied Geophysics62, 33–46.
    [Google Scholar]
  22. JonscherA.K.1983. Dielectric Relaxation in Solids. Chelsea Press, 219–226
    [Google Scholar]
  23. JonscherA.K.1999. Dielectric relaxation in solids. Journal of Physics D: Applied Physics32, 57–70. Doi: 10.1088/0022‐3727/32/14/201.
    [Google Scholar]
  24. KaraoulisM., RevilA., WerkemaD.D., MinsleyB., WoodruffW.F. and KemnaA.2011. Time‐lapse 3D inversion of complex conductivity data using an active time constrained (ATC) approach. Geophysical Journal International187, 237–251.
    [Google Scholar]
  25. KemnaA.2000. Tomographic Inversion of Complex Resistivity.Dissertation, Ruhr Universität Bochum, Germany.
    [Google Scholar]
  26. KochK., KemnaA., IrvingJ. and HolligerK.2011. Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand. Hydrology and Earth System Sciences15, 1785–1794.
    [Google Scholar]
  27. KruschwitzS., BinleyA., Lesmes, L. and ElshenawyA.2010. Textural controls on low‐frequency electrical spectra of porous media. Geophysics75, WA113–WA123.
    [Google Scholar]
  28. LeroyP., RevilA., KemnaA., CosenzaP. and GhorbaniA.2008. Spectral induced polarization of water‐saturated packs of glass beads. Journal of Colloid and Interface Science321, 103–117.
    [Google Scholar]
  29. LesmesD.P. and MorganF.D.2001. Dielectric spectroscopy of sedimentary rocks. Journal of Geophysical Research106(B7), 13329–13346.
    [Google Scholar]
  30. MacdonaldJ.R. and BrachmanM.K.1956. Linear System Integral Transform Relations. Review of Modern Physics28, 393–422.
    [Google Scholar]
  31. MarshallD.J. and MaddenT.R.1959. Induced polarization, a study of its causes. Geophysics24, 790–816.
    [Google Scholar]
  32. MatsumotoA. and HigasiK.1962. Dielectric relaxation of non‐rigid molecules at lower temperature. Journal of Chemical Physics36, 1776–1780.
    [Google Scholar]
  33. MirandaD.A. and Lopez‐RiveraS.A.2008. Determination of Cole‐Cole parameters using only the real part of electrical impedivity measurements. Physiological Measurement29, 669–683. Doi:10.1088/0967‐3334/29/5/011.
    [Google Scholar]
  34. NordsiekS. and WellerA.2008. A new approach to fitting induced‐polarization spectra. Geophysics73(6), F235–F245.
    [Google Scholar]
  35. OlhoeftG.R.1979. Electrical Properties. In: Initial Report of the Petrophysics Laboratory: U.S. Geological Survey Circular 789, (Eds. G.R.Hunt , G.R.Johnson , G.R.Olhoeft , D.E.Watson and K.Watson ), pp. 1–26.
    [Google Scholar]
  36. OlhoeftG.R.1985. Low‐frequency electrical properties. Geophysics50, 2492–2503.
    [Google Scholar]
  37. PeltonW.H., SillW.R. and SmithB.D.1983. Interpretation of complex resistivity and dielectric data ‐ Part I. Geophysical Transactions29, 297–330.
    [Google Scholar]
  38. PeltonW.H., WardS.H., HallofP.G., SillW.R. and NelsonP.H.1978. Mineral discrimination and removal of inductive coupling with multi‐frequency IP. Geophysics43, 588–609.
    [Google Scholar]
  39. PolyaninA.D. and ManzhirovA.V.1998. Handbook of Integral Equations.CRC Press, Boca Raton. ISBN 0‐8493‐2876‐4.
    [Google Scholar]
  40. ProakisJ.G. and ManolakisD.G.2007. Digital Signal Processing: Principles, Algorithms, and Applications.Prentice‐Hall, 4th Ed.
    [Google Scholar]
  41. Radic‐Research
    Radic‐Research . 2008. http://www.radic‐research.homepage.t‐online.de/Flyer_SIP‐Fuchs_III_200810.pdf.
  42. RevilA. and FlorschN.2010. Determination of permeability from spectral induced polarization data in granular media. Geophysical Journal International181, 1480–1498. Doi: 10.1111/j.1365‐246X.2010.04573.x.
    [Google Scholar]
  43. RevilA., LeroyP., GhorbaniA., FlorschN. and NiemeijerA.R.2006. Compaction of quartz sands by pressure solution using a Cole‐Cole distribution of relaxation times. Journal of Geophysical Research111, B09205. Doi:10.1029/2005JB004151.
    [Google Scholar]
  44. RevilA., SchmutzM. and BatzleM.L.2011. Influence of oil wettability upon spectral induced polarization of oil‐bearing sands. Geophysics76(5), A31–A36.
    [Google Scholar]
  45. SchwarzG.1962. A theory of the low‐frequency dielectric dispersion of colloidal particles in electrolyte solution. Journal of Physical Chemistry66, 2636–2642.
    [Google Scholar]
  46. ScottJ. and BarkerR.2003. Determining pore‐throat size in Permo‐Triassic sandstones from low‐frequency electrical spectroscopy. Geophysical Research Letters30, 1450. Doi:10.1029/2003GL016951.
    [Google Scholar]
  47. StraussU.P.1954. The Collected Papers of Peter J.W. Debye.Interscience, New York‐London, 700 pp.
    [Google Scholar]
  48. TabbaghA., CosenzaP., GhorbaniA., GuérinR. and FlorschN.2009. Modelling of Maxwell‐Wagner induced polarisation amplitude for clayey materials. Journal of Applied Geophysics67, 109–113.
    [Google Scholar]
  49. TarasovA. and TitovK.2007. Relaxation time distribution from time domain induced polarization measurements. Geophysical Journal International170, 31–43.
    [Google Scholar]
  50. TongM., LiL., WangW. and JiangY.2006a. A time‐domain induced‐polarization method for estimating permeability in a shaly sand reservoir. Geophysical Prospecting54, 623–631.
    [Google Scholar]
  51. TongM., LiL., WangW. and Jiang. Y.2006b. Determining capillary‐pressure curve, pore‐size distribution, and permeability from induced polarization of shaley sand. Geophysics71, 33–40.
    [Google Scholar]
  52. UrtenovM.A.‐Kh., KirillovaE.V., SeidovaN.M. and NikonenkoV.V.2007. Decoupling of the Nernst‐Planck and Poisson equations. application to a membrane system at overlimiting currents. Journal of Physical Chemistry B111, 14208–14222.
    [Google Scholar]
  53. VanhalaH.1997. Laboratory and Field Studies of Environmental and Exploration Applications of the Spectral Induced Polarization (SIP) Method. Ph.D. Dissertation, Helsinki University of Technology.
    [Google Scholar]
  54. VaudeletP., RevilA., SchmutzM., FranceschiM. and BégassatP.2011. Induced polarization signature of the presence of copper in saturatedsands. Water Resources Research47, W02526. Doi:10.1029/2010WR009310.
    [Google Scholar]
  55. VinegarH.J. and WaxmanM.H.1984. Induced polarization of shaly sands. Geophysics49, 1267–1287.
    [Google Scholar]
  56. WienerN.1949. Extrapolation, Interpolation, and Smoothing of Stationary Time Series.New York, Wiley. ISBN 0‐262‐73005‐7.
    [Google Scholar]
  57. WilliamsG. and WattsD.C.1970. Non‐ Symmetrical Dielectric Relaxation Behavior Arising from a Simple Empirical Decay Function. Transactions of the Faraday Society66, 80–85.
    [Google Scholar]
  58. YeungY.Y. and ShinF.G.1991. Pulse response function of dielectric susceptibility. Journal of Material Sciences26, 1781–1787.
    [Google Scholar]
  59. ZhdanovM.2008. Generalized effective‐medium theory of induced polarization. Geophysics73(5), F197–F211.
    [Google Scholar]
  60. ZisserN., KemnaA. and NoverG.2010. Relationship between low‐frequency electrical properties and hydraulic permeability of low‐permeable sandstones. Geophysics75(3), E131–E141.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2012004
Loading
/content/journals/10.3997/1873-0604.2012004
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error