1887
Volume 10 Number 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Over the last 15 years significant advancements in induced polarization (IP) research have taken place, particularly with respect to spectral IP (SIP), concerning the understanding of the mechanisms of the IP phenomenon, the conduction of accurate and broadband laboratory measurements, the modelling and inversion of IP data for imaging purposes and the increasing application of the method in near‐surface investigations. We summarize here the current state of the science of the SIP method for near‐surface applications and describe which aspects still represent open issues and should be the focus of future research efforts. Significant progress has been made over the last decade in the understanding of the microscopic mechanisms of IP; however, integrated mechanistic models involving different possible polarization processes at the grain/pore scale are still lacking. A prerequisite for the advances in the mechanistic understanding of IP was the development of improved laboratory instrumentation, which has led to a continuously growing data base of SIP measurements on various soil and rock samples. We summarize the experience of numerous experimental studies by formulating key recommendations for reliable SIP laboratory measurements. To make use of the established theoretical and empirical relationships between SIP characteristics and target petrophysical properties at the field scale, sophisticated forward modelling and inversion algorithms are needed. Considerable progress has also been made in this field, in particular with the development of complex resistivity algorithms allowing the modelling and inversion of IP data in the frequency domain. The ultimate goal for the future are algorithms and codes for the integral inversion of 3D, time‐lapse and multi‐frequency IP data, which defines a 5D inversion problem involving the dimensions space (for imaging), time (for monitoring) and frequency (for spectroscopy). We also offer guidelines for reliable and accurate measurements of IP spectra, which are essential for improved understanding of IP mechanisms and their links to physical, chemical and biological properties of interest. We believe that the SIP method offers potential for subsurface structure and process characterization, in particular in hydrogeophysical and biogeophysical studies.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2012027
2018-12-24
2019-12-10
Loading full text...

Full text loading...

References

  1. Abdel AalG.Z., AtekwanaE.A. and AtekwanaE.A.2010b. Effect of bioclogging in porous media on complex conductivity signatures. Journal of Geophysical Research115, G00G07, doi:10.1029/2009JG001159.
    [Google Scholar]
  2. Abdel AalG., AtekwanaE., RadzikowskiS. and RossbachS.2009. Effect of bacterial adsorption on low frequency electrical properties of clean quartz sands and iron‐oxide coated sands. Geophysical Research Letters36, L04403, doi:10.1029/2008GL036196.
    [Google Scholar]
  3. Abdel AalG.Z., AtekwanaE.A., RossbachS. and WerkemaD.D.2010a. Sensitivity of geoelectrical measurements to the presence of bacteria in porous media. Journal of Geophysical Research115, G03017, doi:10.1029/2009JG001279.
    [Google Scholar]
  4. Abdel AalG.Z., AtekwanaE.A., SlaterL.D. and AtekwanaE.A.2004. Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophysical Research Letters31, L12505, doi:10.1029/2004GL020030.
    [Google Scholar]
  5. AlvarezR.1973. Complex dielectric permittivity in rocks: A method for its measurement and analysis. Geophysics38, 920–940.
    [Google Scholar]
  6. AtekwanaE.A. and SlaterL.D.2009. Biogeophysics: A new frontier in Earth science research. Reviews of Geophysics47, RG4004, doi:10.1029/2009RG000285.
    [Google Scholar]
  7. BinleyA., KruschwitzS., LesmesD. and KettridgeN.2010. Exploiting the temperature effects on low frequency electrical spectra of sandstone: A comparison of effective diffusion path lengths. Geophysics75, A43–A46.
    [Google Scholar]
  8. BinleyA., SlaterL., FukesM. and CassianiG.2005. The relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resources Research41(12), W12417, doi:10.1029/2005WR004202.
    [Google Scholar]
  9. BlaschekR. and HördtA.2009. Numerical modelling of the IP effect at the pore scale. Near Surface Geophysics7 (5‐6), 579–588.
    [Google Scholar]
  10. BlaschekR., HördtA. and KemnaA.2008. A new sensitivity‐controlled focusing regularization scheme for the inversion of induced polarization data based on the minimum gradient support. Geophysics73(2), F45–F54.
    [Google Scholar]
  11. BörnerF.D., SchopperJ.R. and WellerA.1996. Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophysical Prospecting44(4), 583–601.
    [Google Scholar]
  12. BreedeK., KemnaA., EsserO., ZimmermannE., VereeckenH. and HuismanJ.A.2011. Joint measurement setup for determining spectral induced polarization and soil hydraulic properties. Vadose Zone Journal10(2), 716–726.
    [Google Scholar]
  13. BreedeK., KemnaA., EsserO., ZimmermannE., VereeckenH. and HuismanJ.A.2012. Spectral induced polarization measurements on variably saturated sand‐clay mixtures. Near Surface Geophysics10(6).
    [Google Scholar]
  14. CassianiG., KemnaA., VillaA. and ZimmermannE.2009. Spectral induced polarization for the characterization of free‐phase hydrocarbon contamination of sediments with low clay content. Near Surface Geophysics7(5‐6), 547–562.
    [Google Scholar]
  15. ChambersJ.E., LokeM.H., OgilvyR.D. and MeldrumP.I.2004. Noninvasive monitoring of DNAPL migration through a saturated porous medium using electrical impedance tomography. Journal of Contaminant Hydrology68(1‐2), 1–22.
    [Google Scholar]
  16. ChelidzeT.L. and GueguenY.1999. Electrical spectroscopy of porous rocks: A review ‐ I. Theoretical models. Geophysical Journal International137, 1–15.
    [Google Scholar]
  17. ChenJ., KemnaA. and HubbardS.S.2008. A comparison between Gauss‐Newton and Markov‐chain Monte Carlo‐based methods for inverting spectral induced‐polarization data for Cole‐Cole parameters. Geophysics73(2), F247–F259.
    [Google Scholar]
  18. ChenJ., HubbardS.S., WilliamsK.H., Flores OrozcoA. and KemnaA.2012. Estimating the spatiotemporal distribution of geochemical parameters associated with biostimulation using spectral induced polarization data and hierarchical Bayesian models. Water Resources Research48(5), W05555, doi:10.1029/2011WR010992.
    [Google Scholar]
  19. ChenY. and OrD.2006. Geometrical factors and interfacial processes affecting complex dielectric permittivity of partially saturated porous media. Water Resources Research42, W06423, doi:10.1029/2005WR004744.
    [Google Scholar]
  20. CommerM., NewmanG.A., WilliamsK.H. and HubbardS.S.2011. 3D induced‐polarization data inversion for complex resistivity. Geophysics76(3), F157–F171.
    [Google Scholar]
  21. DahlinT., LerouxV. and NiessenJ.2002. Measuring techniques in induced polarization imaging. Journal of Applied Geophysics50, 279–298.
    [Google Scholar]
  22. DavisC.A., AtekwanaE., AtekwanaE., SlaterL., RossbachS. and MormileM.R.2006. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. GeophysicalResearch Letters33, L18403, doi:10.1029/2006GL027312.
    [Google Scholar]
  23. DukhinS.S. and ShilovP.1974. Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes.John Wiley & Sons, Inc., New York.
    [Google Scholar]
  24. FerréT., BentleyL., BinleyA., LindeN., KemnaA., SinghaK.et al.2009. Critical steps for the continuing advancement of hydrogeophys‐ics. Eos Transactions of the American Geophysical Union90(23), doi:10.1029/2009EO230004.
    [Google Scholar]
  25. FixmanM.1980. Charged macromolecules in external fields. I. The sphere. Journal of Chemical Physics72, 5177–5186.
    [Google Scholar]
  26. Flores OrozcoA., WilliamsK.H., LongP.E., HubbardS.S. and KemnaA.2011. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium‐contaminated aquifer. Journal of Geophysical Research116, G03001, doi:10.1029/2010JG001591.
    [Google Scholar]
  27. Flores OrozcoA., KemnaA. and ZimmermannE.2012a. Data error quantification in spectral induced polarization imaging. Geophysics77(3), E227‐E237.
    [Google Scholar]
  28. Flores OrozcoA., KemnaA., OberdörsterC., ZschornackL., LevenC., DietrichP. and WeissH.2012b. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. Journal of Contaminant Hydrology136/137, 131–144.
    [Google Scholar]
  29. FlorschN., LlubesM., TéreygeolF., GhorbaniA. and RobletP.2011. Quantification of slag heap volumes and masses through the use of induced polarization: application to the Castel‐Minier site. Journal of Archaeological Science38, 438–451.
    [Google Scholar]
  30. GhorbaniA., CamerlynckC. and FlorschN.2009. CR1Dinv: A Matlab program to invert 1D spectral induced polarization data for the Cole‐Cole model including electromagnetic effects. Computers and Geosciences35(2), 255–266.
    [Google Scholar]
  31. GhorbaniA., CamerlynckC., FlorschN., CosenzaP. and RevilA.2007. Bayesian inference of the Cole‐Cole parameters from time and frequency‐domain induced polarization. Geophysical Prospecting55(4), 589‐605.
    [Google Scholar]
  32. HerwangerJ.V., PainC.C., BinleyA., De OliveiraC.R.E. and WorthingtonM.H.2004. Anisotropic resistivity tomography. Geophysical Journal International158(2), 409–425.
    [Google Scholar]
  33. HördtA., BlaschekR., BinotF., DruiventakA., KemnaA., KreyeP. and ZisserN.2009. Case histories of hydraulic conductivity estimation with induced polarisation at the field scale. Near‐Surface Geophysics7(5‐6), 529–545.
    [Google Scholar]
  34. HördtA., BlaschekR., KemnaA. and ZisserN.2007. Hydraulic conductivity estimation from induced polarization data at the field scale ‐ The Krauthausen case history. Journal of Applied Geophysics62, 33–46.
    [Google Scholar]
  35. JougnotD., GhorbaniA., RevilA., LeroyP. and CosenzaP.2010. Spectral induced polarization of partially saturated clay‐rocks: A mechanistic approach. Geophysical Journal International180, 210224.
    [Google Scholar]
  36. KaraoulisM., KimJ.‐H. and TsourlosP.I.2011a. 4D active time constrained inversion. Journal of Applied Geophysics73, 25–34.
    [Google Scholar]
  37. KaraoulisM., RevilA., WerkemaD.D., MinselyB.J., WoodruffW.F. and KemnaA.2011b. Time‐lapse three‐dimensional inversion of complex conductivity data using an active time constrained (ATC) approach. Geophysical Journal International187, 237–251.
    [Google Scholar]
  38. KemnaA.2000. Tomographic inversion of complex resistivity ‐ Theory and application. PhD thesis, Ruhr‐University of Bochum.
    [Google Scholar]
  39. KemnaA. and BinleyA.1996. Complex electrical resistivity tomography for contaminant plume delineation:Proceedings of the 2nd Meeting on Environmental and Engineering Geophysics, Environmental and Engineering Geophysical Society ‐ European Section, pp. 196–199.
    [Google Scholar]
  40. KemnaA., BinleyA., RamirezA. and DailyW.2000. Complex resistivity tomography for environmental applications. Chemical Engineering Journal77, 11–18.
    [Google Scholar]
  41. KemnaA., BinleyA. and SlaterL.2004. Crosshole IP imaging for engineering and environmental applications. Geophysics69(1), 97–107.
    [Google Scholar]
  42. KemnaA., RäkersE. and DresenL.1999. Field applications of complex resistivity tomography. Expanded Abstracts of the 69th Annual International Meeting, Society of Exploration Geophysics, 331–334.
    [Google Scholar]
  43. KenkelJ., HördtA. and KemnaA.2012. 2D modelling of induced polarisation data with anisotropic complex conductivities. Near Surface Geophysics10(6).
    [Google Scholar]
  44. KimJ.‐H., YiM.J., ParkS.G. and KimJ.G.2009. 4‐D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. Journal of Applied Geophysics68, 522–532.
    [Google Scholar]
  45. KochK., KemnaA., IrvingJ. and HolligerK.2011. Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand. Hydrology and Earth System Sciences15(6), 1785–1794.
    [Google Scholar]
  46. KruschwitzS., BinleyA., LesmesD. and ElshenawyA.2010. Textural controls on low frequency electrical spectra of porous media. Geophysics75(4), WA113‐WA123.
    [Google Scholar]
  47. KwonG.W., WonY.S. and YoonB.J.1998. Electrical double‐layer interactions of regular arrays of spheres. Journal of Colloid and Interface Science205(2), 423–432.
    [Google Scholar]
  48. LaBrecqueD. and DailyW.2008. Assessment of measurement errors for galvanic‐resistivity electrodes of different composition. Geophysics73(2), F55–F64.
    [Google Scholar]
  49. LaBrecqueD.J. and YangX.2001. Difference inversion of ERT data: A fast inversion method for 3‐D in situ monitoring. Journal of Environmental and Engineering Geophysics5, 83–90.
    [Google Scholar]
  50. LeroyP. and RevilA.2009. A mechanistic model for the spectral induced polarization of clay materials. Journal of Geophysical Research114(B10), B10202, doi:10.1029/2008JB006114.
    [Google Scholar]
  51. LeroyP., RevilA., KemnaA., CosenzaP. and GhorbaniA.2008. Complex conductivity of water‐saturated packs of glass beads. Journal of Colloid and Interface Science321 (1), 103–117.
    [Google Scholar]
  52. LesmesD.P. and FryeK.M.2001. Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstones. Journal of Geophysical Research106, 4079–4090.
    [Google Scholar]
  53. LesmesD.P. and MorganF.D.2001. Dielectric spectroscopy of sedimentary rocks. Journal of Geophysical Research106, 13329–13346.
    [Google Scholar]
  54. LiY. and OldenburgD.W.2000. 3‐D inversion of induced polarization data. Geophysics65(6), 1931–1945.
    [Google Scholar]
  55. de LimaO.A.L. and SharmaM.M.1992. A generalized Maxwell‐Wagner theory for membrane polarization in shaly sands. Geophysics57(3), 431‐440.
    [Google Scholar]
  56. LindeN., BinleyA., TryggvasonA., PetersenL.B. and RevilA.2006. Improved hydrogeophysical characterization using joint inversion of cross‐hole electrical resistance and ground‐penetrating radar traveltime data.Water Resources Research42, W12404, doi:10.1029/2006WR005131.
    [Google Scholar]
  57. LokeM.H., ChambersJ.E. and OgilvyR.D.2006. Inversion of 2D spectral induced polarization imaging data. Geophysical Prospecting54(3), 287–301.
    [Google Scholar]
  58. MarshallD.J. and MaddenT.R.1959. Induced polarization, a study of its causes. Geophysics24(4), 790–816.
    [Google Scholar]
  59. MartinT.2010. Complex resistivity measurements on oak. European Journal of Wood and Wood Products70, 45–53.
    [Google Scholar]
  60. MartinezF.J., BatzleM.L. and RevilA.2012. Influence of temperature on seismic velocities and complex conductivity of heavy oil‐bearing sands. Geophysics77, WA19–WA34.
    [Google Scholar]
  61. MaurerH., HolligerK. and BoernerD.E.1998. Stochastic regularization: Smoothness or similarity?Geophysical Research Letters25(15), 2889–2892.
    [Google Scholar]
  62. MerriamJ.B.2007. Induced polarization and surface electrochemistry. Geophysics72(4), F157–F166.
    [Google Scholar]
  63. MorganF.D. and LesmesD.P.1994. Inversion for dielectric relaxation spectra. Journal of Chemical Physics100(1), 671–681.
    [Google Scholar]
  64. NordsiekS. and WellerA.2008. A new approach to fitting induced‐polarization spectra. Geophysics73(6), F235–F245.
    [Google Scholar]
  65. NtarlagiannisD., WilliamsK.H., SlaterL. and HubbardS.2005b. Low‐frequency electrical response to microbial induced sulfide precipitation. Journal of Geophysical Research110, G02009, doi:10.1029/2005JG000024.
    [Google Scholar]
  66. NtarlagiannisD., YeeN. and SlaterL.2005a. On the low‐frequency induced polarization of bacterial cells in sands. Geophysical Research Letters32, L24402, doi:10.1029/2005GL024751.
    [Google Scholar]
  67. OldenburgD.W. and LiY.1994. Inversion of induced polarization data. Geophysics59(9), 1327–1341.
    [Google Scholar]
  68. PersonnaY.R., NtarlagiannisD., SlaterL., YeeN., O’BrienM. and HubbardS.2008. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations. Journal of Geophysical Research113, G02020, doi:10.1029/2007JG000614.
    [Google Scholar]
  69. RadicT.2004. Elimination of cable effects while multi‐channel SIP measurements. Proceedings of the 10th European Meeting of Environmental and Engineering Geophysics, European Association of Geoscientists and Engineers, p. 029.
    [Google Scholar]
  70. RevilA.1999. Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials in colloids and granular porous media: A unified model. Journal of Colloid and Interface Science212, 503–522.
    [Google Scholar]
  71. RevilA. and CosenzaP.2010. Comment on ‘Generalized effective‐medium theory of induced polarization’ (Michael Zhdanov, 2008, Geophysics73(2), F197‐F211). Geophysics 75>, X7–X9.
    [Google Scholar]
  72. RevilA. and FlorschN.2010. Determination of permeability from spectral induced polarization data in granular media. Geophysical Journal International181, 1480–1498.
    [Google Scholar]
  73. RevilA., SchmutzM. and BatzleM.L.2011. Influence of oil wettability upon spectral induced polarization of oil‐bearing sands. Geophysics76(5), A31–A36.
    [Google Scholar]
  74. RevilA.2012. Spectral induced polarization of shaly sands: Influence of the electrical double layer. Water Resources Research48(2), W02517, doi:10.1029/2011WR011260
    [Google Scholar]
  75. RevilA., KaraoulisM., JohnsonT. and KemnaA.2012a. Review: Some low‐frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal20(4), 617–658.
    [Google Scholar]
  76. RevilA., KochK. and HolligerK.2012b. Is it the grain size or the characteristic pore size that controls the induced polarization relaxation time of clean sands and sandstones?Water Resources Research76, A31–A36.
    [Google Scholar]
  77. RouthP.S., OldenburgD.W. and LiY.1998. Regularized inversion of spectral IP parameters from complex resistivity data. Expanded Abstracts of the 68th Annual International Meeting, Society of Exploration Geophysicists, 810–813.
    [Google Scholar]
  78. SchleiferN, WellerA., SchneiderS. and JungeA.2002. Investigation of a Bronze Age plankway by spectral induced polarisation. Archaeological Prospection9, 243–253.
    [Google Scholar]
  79. SchmutzM., RevilA., VaudeletP., BatzleM., Femenía ViñaoP. and WerkemaD.D.2010. Influence of oil saturation upon spectral induced polarization of oil‐bearing sands. Geophysical Journal International183(3), 211–224.
    [Google Scholar]
  80. ScottJ.B. and BarkerR.D.2003. Determining pore‐throat size in Permo‐riassic sandstones from low‐frequency electrical spectroscopy. Geophysical Research Letters30, 1450, doi:10.1029/2003GL016951.
    [Google Scholar]
  81. SeigelH.O.1959. Mathematical formulation and type curves for induced polarization. Geophysics24(3), 547–565.
    [Google Scholar]
  82. SeigelH., NabighianM., ParasnisD.S. and VozoffK.2007. The early history of the induced polarization method. The Leading Edge26(3), 312‐321.
    [Google Scholar]
  83. ShiW., RodiW. and MorganF.D.1998. 3‐D induced polarization inversion using complex electrical resistivities. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Environmental and Engineering Geophysical Society, pp. 785–794.
    [Google Scholar]
  84. SkoldM., RevilA. and VaudeletP.2011. The pH dependence of spectral induced polarization of silica sands: Experiment and modelling. GeophysicalResearch Letters38, L12304, doi:10.1029/2011GL047748.
    [Google Scholar]
  85. SlaterL.2007. Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geometries ‐ A review. Surveys in Geophysics28, 169‐197.
    [Google Scholar]
  86. SlaterL. and BinleyA.2003. Evaluation of permeable reactive barrier (PRB) integrity using electrical imaging methods. Geophysics68(3), 911‐921.
    [Google Scholar]
  87. SlaterL. and BinleyA.2006. Synthetic and field‐based electrical imaging of zero valent iron barrier: Implications for monitoring long‐term barrier performance. Geophysics71, 129–137.
    [Google Scholar]
  88. SlaterL.D. and GlaserD.R.2003. Controls on induced polarization in sandy unconsolidated sediments and application to aquifer characterization. Geophysics68(5), 1547–1558.
    [Google Scholar]
  89. SlaterL. and LesmesD.P.2002. Electrical‐hydraulic relationships observed for unconsolidated sediments. Water Resources Research38, 1213, doi:10.1029/2001WR001075.
    [Google Scholar]
  90. SlaterL., NtarlagiannisD., PersonnaY.R. and HubbardS.S.M.2007. Pore‐scale spectral induced polarization signatures associated with FeS biomineral transformations. Geophysical Research Letters34, L21404, doi:10.1029/2007GL031840.
    [Google Scholar]
  91. SlaterL., NtarlagiannisD. and WishartD.2006. On the relationship between induced polarization and surface area in metal‐sand and clay‐sand mixtures. Geophysics71(2), A1–A5.
    [Google Scholar]
  92. SumnerJ.S.1976. Principles of Induced Polarisation for Geophysical Exploration.Elsevier, Amsterdam.
    [Google Scholar]
  93. TitovK., KomarovV., TarasovV. and LevitskiA.2002. Theoretical and experimental study of time domain‐induced polarization in water‐saturated sands. Journal of Applied Geophysics50(4), 417–433.
    [Google Scholar]
  94. UlrichC. and SlaterL.D.2004. Induced polarization measurements on unsaturated, unconsolidated sands. Geophysics69(3), 762–771.
    [Google Scholar]
  95. VanhalaH.1997. Mapping oil‐contaminated sand and till with the spectral induced polarization (SIP) method. Geophysical Prospecting45(2), 303–326.
    [Google Scholar]
  96. VanhalaH. and SoininenH.1995. Laboratory technique for measurement of spectral induced polarization response of soil samples. Geophysical Prospecting43, 655–676.
    [Google Scholar]
  97. VaudeletP., RevilA., SchmutzM., FranceschiM. and BégassatP.2011. Induced polarization signatures of cations exhibiting differential sorption behaviors in saturated sands. Water Resources Research47(2), W02526, doi:10.1029/2010WR009310.
    [Google Scholar]
  98. VinegarH.J. and WaxmanM.H.1984. Induced polarization of shaly sands. Geophysics49(8), 1267–1287.
    [Google Scholar]
  99. WardS.H., SternbergB.K., LaBrecqueD.J. and PoultonM.M.1995. Recommendations on IP research. The Leading Edge14, 243‐247.
    [Google Scholar]
  100. WellerA., SeichterM. and KampkeA.1996. Induced‐polarization modelling using complex electrical conductivities. Geophysical Journal International127, 387–398.
    [Google Scholar]
  101. WellerA., BauerochseA. and NordsiekS.2006. Spectral induced polarisation ‐ a geophysical method for archaeological prospection in peatlands. Journal of Wetland Archaeology6, 105–125.
    [Google Scholar]
  102. WellerA., SlaterL., NordsiekS. and NtarlagiannisD.2010a. On the estimation of specific surface per unit pore volume from induced polarization: A robust empirical relation fits multiple data sets. Geophysics75(5), WA105–WA112.
    [Google Scholar]
  103. WellerA., NordsiekS. and DebschützW.2010b. Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral‐induced polarization. Geophysics75(5), E215–E226.
    [Google Scholar]
  104. WellerA., BreedeK., SlaterL. and NordsiekS.2011. Effect of changing water salinity on complex conductivity spectra of sandstones. Geophysics76(6), F315–F327.
    [Google Scholar]
  105. WilliamsK.H., KemnaA., WilkinsM.J., DruhanJ., ArntzenE., N’GuessanA.L.et al.2009. Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environmental Science and Technology43(13), 6717–6723.
    [Google Scholar]
  106. WilliamsK.H., NtarlagiannisD., SlaterL.D., DohnalkovaA., HubbardS.S. and BanfieldJ.F.2005. Geophysical imaging of stimulated microbial biomineralization. Environmental Science and Technology39(19), 7592–7600.
    [Google Scholar]
  107. WinchenT., KemnaA., VereeckenH. and HuismanJ.A.2009. Characterization of bimodal facies distributions using effective aniso‐tropic complex resistivity: A 2D numerical study based on Cole‐Cole models. Geophysics74(4), A19–A22.
    [Google Scholar]
  108. WongJ.1979. An electrochemical model of the induced polarization phenomenon in disseminated sulfide ores. Geophysics44(7), 1245–1265.
    [Google Scholar]
  109. Yuval and OldenburgD.W.1996. DC resistivity and IP methods in acid mine drainage problems ‐ Results from the Copper Cliff mine tailings impoundments. Journal of Applied Geophysics34(3), 187–198.
    [Google Scholar]
  110. ZanettiC., WellerA., VennetierM. and Mériaux, P.2011. Detection of buried tree root samples by using geoelectrical measurements: a laboratory experiment. Plant and Soil339, 273–283.
    [Google Scholar]
  111. ZimmermannE., KemnaA., BerwixJ., GlaasW., MünchH.M. and HuismanJ.A.2008a. A high‐accuracy impedance spectrometer for measuring sediments with low polarizability. Measurement Science and Technology19(10), 105603, doi:10.1088/0957‐0233/19/10/105603.
    [Google Scholar]
  112. ZimmermannE., KemnaA., BerwixJ., GlaasW. and VereeckenH.2008b. EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments. Measurement Science and Technology19(10), 094010, doi:10.1088/0957‐0233/19/9/094010.
    [Google Scholar]
  113. ZisserN., KemnaA. and NoverG.2010a. Relationship between low‐frequency electrical properties and hydraulic permeability of low‐permeability sandstones. Geophysics75(5), E131–E141.
    [Google Scholar]
  114. ZisserN., KemnaA. and NoverG.2010b. Dependence of spectral induced polarization response of sandstone on temperature and its relevance to permeability estimation. Journal of Geophysical Research115, B09214, doi:10.1029/2010JB007526.
    [Google Scholar]
  115. ZisserN. and NoverG.2009. Anisotropy of permeability and complex resistivity of tight sandstones subjected to hydrostatic pressure. Journal of Applied Geophysics68(3), 356 – 70.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2012027
Loading
/content/journals/10.3997/1873-0604.2012027
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error