1887
Volume 10 Number 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Both environmentalists and archaeologists are interested in the detection and quantification of the remains of mine slag heaps from ancient smelters: possible pollution of the slag heaps and information concerning the history of the smelter's mine. Although magnetic surveys can be used to detect subsurface slag accumulations, it is not possible to derive the total amount of material from such surveys or to accurately delineate the heaps through the use of this method. Conversely, ‘Induced Polarization’ (IP) surveying allows a relevant and robust assessment of the volume of slag concentrations to be determined. In the present study, we follow up on results obtained in a previous study, carried out at the 14th Castel‐Minier mine (Ariège, France) site, where we have shown that the chargeability is proportional to the slag concentration in the ground and have used this property to perform 3D tomography of the heap. Based on a previous investigation using spectral induced polarization along a simple profile showing that the phase peak related to the slags is situated at approximately 1 Hz, in the present paper we extend our prospection to 3D by using a Terrameter SAS1000 and measuring temporal chargeability. The set of three‐dimensional data is recorded by means of classical transect measurements along parallel close profiles and is then interpreted using the RES3DINV code. Finally, archaeological and auger soundings confirmed the assessments derived from this geophysical investigation. We also briefly discuss the source of the IP signal, which we suspect to be induced by magnetite particles embedded in the slags.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2012042
2012-09-01
2020-06-07
Loading full text...

Full text loading...

References

  1. AspinalA. and LunamJ.1968a. Induced polarization as a technique for archaeological surveying. Prospezioni Archeologiche3, 91–93.
    [Google Scholar]
  2. AspinalA. and LunamJ.1968b. An induced polarization instrument for the detection of near‐surface features. Prospezioni Archeologiche5, 67–75.
    [Google Scholar]
  3. BarsoukovE. and MacdonaldJ.R.2005. Impedance Spectroscopy: Theory, Experiment, and Applications. Wiley‐Interscience, 2nd edition, p. 616. ISBN‐10: 0471647497 and ISBN‐13: 9780471647492.
    [Google Scholar]
  4. BonnamourG., FlorschN. and TéreygeolF.2007. Les prospections des ferriers de Castel‐Minier: Approche interdisciplinaire. Archéosciences, Revue d’Archéométrie31,37–44.
    [Google Scholar]
  5. ColeK.S. and ColeR.H.1941. Dispersion and absorption in dielectrics, I. Alternating current fields. Journal of Chemical Physics9, 341–353.
    [Google Scholar]
  6. CommerM., NewmanG.A., WilliamK.H. and HubbardS.S.2011. 3D induced‐polarization data inversion for complex resistivity. Geophysics76, 157–171. doi: 10.1190/1.3560156
    [Google Scholar]
  7. Day‐LewisF.F., SinghaK. and BinleyA.D.2005. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution‐dependent limitations. Journal of Geophysical Research110, B08206. doi:10.1029/2004JB003569.
    [Google Scholar]
  8. DecombeixP.‐M., FabreJ.‐M., TollonF. and Domergue Cl. 1998. Evaluation du volume des ferries romains du domaine des Forges (Les Martys, Aude), de la masse de scories qu’ils renferment et de la production de fer correspondante. Archéosciences, Revue d’Archéométrie22, 77–90.
    [Google Scholar]
  9. DomergueC. and LeroyM.2000. Mines et métallurgie en Gaule, recherches récentes. Gallia57, 158.
    [Google Scholar]
  10. FlorschN., CamerlynckC. and RevilA.2012. Direct estimation of the distribution of relaxation times from induced‐polarization spectra using a Fourier transform analysis. Near Surface Geophysics10(6). doi:10.3997/1873‐0604.2012004.
    [Google Scholar]
  11. FlorschN., LlubesM., TéreygeolF., GhorbaniA. and RobletP.2008. Quantification of buried slag volumes by using non‐invasive geophysical methods. Proceedings of the 1st International EARSeL Workshop, CNR, Rome, September 30‐October 4, 2008.
    [Google Scholar]
  12. FlorschN., LlubesM., TéreygeolF., GhorbaniA. and RobletP.2011. Quantification of slag heap volumes and masses through the use of induced polarization: application to the Castel‐Minier site. Journal of Archaeological Science38 (2), 438–451. doi:10.1016/j.jas.2010.09.027.
    [Google Scholar]
  13. GhorbaniA., CamerlynckC. and FlorschN.2009. CR1Dinv: A Matlab program to invert 1D spectral induced polarization data for the Cole‐Cole model including electromagnetic effects. Computers & Geosciences35, 255–266.
    [Google Scholar]
  14. GhorbaniA., CamerlynckC., FlorschN., CosenzaP. and RevilA.2007. Bayesian inference of the Cole‐Cole parameters from time‐ and frequency‐domain induced polarization. Geophysical Prospecting55, 589–605. doi:10.1111/j.1365‐2478.2007.00627.x
    [Google Scholar]
  15. Ingeman‐NielsenT. and BaumgartnerF.2006. CR1Dmod: A Matlab program to model 1D complex resistivity effects in electrical and EM surveys. Computers & Geosciences32, 1411–1419.
    [Google Scholar]
  16. KemnaA.2000. Tomographic inversion of complex resistivity: Theory and application. Onsnabrück: Der Andere verlag 2000. Berichte des Institutes für Geophysik der Ruhr‐Universität Bochum: Reihe 1; Nr. 56. Zugl. : Bochum, Der Andere Verlag; Reihe 1; Ruhr‐Universität, Diss., 2000. ISBN 3‐934366‐92‐9.
    [Google Scholar]
  17. KemnaA. and BinleyA.1996. Complex electrical resistivity tomography for contaminant plume delineation. Proceedings of 3rd Annual Meeting, Environmental and Engineering Geophysics, EEGS, Expanded Abstracts, 151–154.
    [Google Scholar]
  18. KemnaA., BinleyA. and SlaterL.2004. Crosshole IP imaging for engineering and environmental applications. Geophysics69, 97–107.
    [Google Scholar]
  19. Le BorgneE.1960. Influence du feu sur les propriétés magnétiques du sol et sur celles du schiste et du granite. Annales de Geophysique16, 159–195.
    [Google Scholar]
  20. LiY. and OldenburgD.W.2000. 3‐D inversion of induced polarization data. Geophysics65, 1931–1945. [ISI] doi:10.1190/1.1444877
    [Google Scholar]
  21. LokeM.H. and BarkerR.D.1996. Practical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting44, 499–523.
    [Google Scholar]
  22. LokeM.H., ChambersJ.E. and OgilvyR.D.2006. Inversion of 2D spectral induced polarization imaging data. Geophysical Prospecting54, 287–301.
    [Google Scholar]
  23. LuoY. and ZhangG.1998. Theory and Application of Spectral Induced Polarization. Geophysical Monograph Series. Edited by Society of Exploration Geophysicists.
    [Google Scholar]
  24. MorganF.D. and LesmesD.2004. Induced Polarization with Electromagnetic coupling: 3D Spectral Imaging Theory. EMSP Project No. 73836, U.S. Department of Energy, Environmental Management Science Program, Washington, D.C. Available online at http://emsp.em.doe.gov/
    [Google Scholar]
  25. NegriS., LeucciG. and MazzoneF.2008. High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface. Journal of Applied Geophysics65, 111–120. doi:10.1016/j.jappgeo.2008.06.004.
    [Google Scholar]
  26. NguyenF., KemnaA., AntonssonA., EngesgaardP., KurasO., OgilvyR.et al. 2009. Characterization of seawater intrusion using 2D electrical imaging. Near Surface Geophysics7, 377–390.
    [Google Scholar]
  27. RouthP.S., OldenburgD.W. and LiY.1998. Regularized in version of spectral IP parameters from complex resistivity data. SEG Expanded Abstracts17, 810. http://dx.doi.org/10.1190/L1820608
    [Google Scholar]
  28. SchleiferN., WellerA., SchneiderS. and JungeA.2002. Investigation of a Bronze Age plankway by spectral induced polarisation. Archaeological Prospection9, 243–253.
    [Google Scholar]
  29. SeigelH.O.1959. Mathematical formulation and type curves for induced polarization. Geophysics24, 547–565.
    [Google Scholar]
  30. SeigelH.O., VanhalaH. and SheardS.N.1997. Some case histories of source discrimination using time‐domain spectral IP. Geophysics62, 1394–1408.
    [Google Scholar]
  31. UllrichB., MeyerC. and WellerA.2007a. Geoelektrik und Georadar in derArchäologischen Forschung: Geophysikalische 3D‐Untersuchungen in Munigua (Spanien). In: Einführung in die Archäometrie (ed. G.A.Wagner ), pp. 76–93. Springer‐Verlag Berlin, Heidelberg.
    [Google Scholar]
  32. UllrichB., WellerA., GüntherT. and RückerC.2007b. Geophysical prospecting of ancient slag deposits in Munigua (Spain) and Ain‐al Hajer (Morocco) using complex resistivity tomography. 2nd International Conference Archaeometallurgy in Europe – Aquileia (Italy) 2007.
    [Google Scholar]
  33. WellerA.2003. Spektrale induzierte Polarisation in der Archäometrie. Freiberger Forsch.‐Hefte C496, 14–29.
    [Google Scholar]
  34. WellerA., BruneS., HennigT. and KansyA.2000. Spectral induced polarisation at a medieval smelting site. 6th Meeting of the Environmental and Engineering Geophysical Society (European Section), Bochum 2000.
    [Google Scholar]
  35. XiangJ., JonesN.B., ChengD. and SchlindweinF.S.2001. Direct inversion of the apparent complex‐resistivity spectrum. Geophysics66, 1399–1404.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2012042
Loading
/content/journals/10.3997/1873-0604.2012042
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error