1887
Volume 11 Number 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

The derivation of gradient maps in geophysics, particularly in the field of self‐potential has the potential to improve our understanding on the source of a signal. Self‐potential/elevation gradient maps are beneficial in significantly reducing the topographic effect. Manual calculation of the gradient for large data sets in two‐dimensions is time consuming and highly dependent on the direction of the calculation. Automation of the calculation process has the potential to overcome the time and directional dependency problems. The derivation of gradient maps in the multi‐direction improves the result and array based operators can perform the automatic calculations rapidly. Four different gradient calculation methods based on a new automatic array oriented procedure (swirl procedure) are discussed and tested with artificial and field data sets. These four methods can be simply defined by the number of data contributing to the calculation (full‐swirl or limited‐swirl procedures) and the mathematical operator (maximum value or mean value) used in the calculation. The mean value operator using the full‐swirl procedure gave the most reliable result in terms of gradient range and accuracy. The swirl procedure can effectively perform the self‐potential/elevation gradient calculations and it has a potential use in various applications.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2012061
2012-11-01
2024-04-25
Loading full text...

Full text loading...

References

  1. AizawaK.2008. Classification of self‐potential anomalies on volcanoes and possible interpretations for their subsurface structure. Journal of Volcanology and Geothermal Research175(3), 253–268.
    [Google Scholar]
  2. AizawaK., OgawaY. and IshidoT.2009. Groundwater flow and hydrothermal systems within volcanic edifices: Delineation by electric self‐potential and magnetotellurics. Journal of Geophysical Research114, B01208.
    [Google Scholar]
  3. AizawaK., YoshimuraR., OshimanN., YamazakiK., UtoT., OgawaY.et al. 2005. Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self‐potential. Earth and Planetary Science Letters235, 343–355.
    [Google Scholar]
  4. AntrayguesP. and AubertM.1993. Self potential generated by two phase flow in a porous medium: Experimental study and volcanological applications. Journal of Geophysical Research98(B12), 22273–22281.
    [Google Scholar]
  5. AroraT., LindeN., RevilA. and CastermantJ.2007. Non‐intrusive characterization of the redox potential of landfill leachate plumes from self‐potential data. Journal of Contaminant Hydrology92, 274–292.
    [Google Scholar]
  6. AubertM. and AtanganaQ.Y.1996. Self‐potential method in hydrogeological exploration of volcanic areas. Ground Water34(6), 1010–1016.
    [Google Scholar]
  7. AubertM., DanaI.N. and GourgaudA.2000. Internal structure of the Merapi summit from self‐potential measurements. Journal of Volcanology and Geothermal Research100, 337–343.
    [Google Scholar]
  8. AubertM., DanaI.N. and LivetM.1990. Vérification de limites de nappes aquifères en terrain volcanique par la méthode de polarisation spontanée. Comptes rendus de l’Académie des sciences, Série 2311(8), 999–1004.
    [Google Scholar]
  9. BogoslovskyV.A. and OgilvyA.A.1977. Geophysical methods for the investigation of landslides. Geophysics42(3), 562–571.
    [Google Scholar]
  10. BoleveA., RevilA., JanodF., MattiuzzoJ.L. and JardaniA.2007. A new formulation to compute self‐potential signals associated with ground water flow. Hydrology and Earth System Sciences Discussions4, 1429–1463.
    [Google Scholar]
  11. CammaranoF., MaurielloP., PatellaD., PiroS., RossoF. and VersinoL.1998. Integration of high resolution geophysical methods. Detection of shallow depth bodies of archaeological interest. Annali di Geofisica41(3), 359–368.
    [Google Scholar]
  12. CastermantJ., MendonçaC.A., RevilA., TrolardF., BourriéG. and LindeN.2008. Redox potential distribution inferred from self‐potential measurements associated with the corrosion of a burden metallic body. Geophysical Prospecting56(2), 269–282.
    [Google Scholar]
  13. CorryC.E.1985. Spontaneous polarization associated with porphyry sulfide mineralization. Geophysics50(6), 1020–1034.
    [Google Scholar]
  14. CorwinR.F. and HooverD.B.1979. The self‐potential method in geothermal exploration. Geophysics44(2), 226–245.
    [Google Scholar]
  15. CrespyA., RevilA., LindeN., ByrdinaS., JardaniA., BolèveA. and HenryP.2008. Detection and localization of hydromechanical disturbances in a sandbox using the self potential method. Journal of Geophysical Research B: Solid Earth113(1), B01205.
    [Google Scholar]
  16. DrahorM.G.2004. Application of the Self‐potential Method to Archaeological Prospection: Some Case Histories. Archaeological Prospection11(2), 77–105.
    [Google Scholar]
  17. FinizolaA., LénatJ.‐F., MacedoO., RamosD., ThouretJ.‐C. and SortinoF.2004. Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self‐potential measurements. Journal of Volcanology and Geothermal Research135, 343–360.
    [Google Scholar]
  18. FinizolaA., SortinoS., LénatJ.‐F. and ValenzaM.2002. Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self‐potential and CO2 surveys. Journal of Volcanology and Geothermal Research116, 1–18.
    [Google Scholar]
  19. HaralickR.M., SternbergS.R. and ZhuangX.1987. Image Analysis Using Mathematical Morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence9(4), 532–550.
    [Google Scholar]
  20. IshidoT.2004. Electrokinetic mechanism for the “W”‐shaped self‐potential profile on volcanoes. Geophysical Research Letters31, L15616.
    [Google Scholar]
  21. JacksonD.B. and KauahikauaJ.1987. Regional self‐potential anomalies at Kilauea volcano. Volcanism in Hawaii. USGS Professional paper1350(40), 947–959.
    [Google Scholar]
  22. LénatJ.‐F.1987. Structure and dynamique interne d’un volcan basaltique intraplaque océanique: Le Piton de la Fournaise (île de la Réunion) . Thèse de doctorat, Université Blaise Pascal, Clermont‐Ferrand (France).
    [Google Scholar]
  23. LénatJ.‐F.2007. Retrieving self‐potential anomalies in a complex volcanic environment: An SP/elevation gradient approach. Near Surface Geophysics5(3), 161–172.
    [Google Scholar]
  24. LénatJ.‐F., RobineauB., DurandS. and BachéleryP.1998. Etude de la zone sommitale du volcan Karthala (Grande Comore) par polarisation spontanée. Comptes Rendus de l’Académie des Sciences, Series IIA327(12), 781–788.
    [Google Scholar]
  25. LindeN. and RevilA.2007. Inverting self‐potential data for redox potentials of contaminant plumes. Geophysical Research Letters34, L14302.
    [Google Scholar]
  26. LögnO. and BolvikenB.1974. Self potentials at the Joma pyrite deposit, Norway. Geoexploration12(1), 11–28.
    [Google Scholar]
  27. MaineultA., BernabéY. and AckererP.2005. Detection of advected concentration and pH fronts from self‐potential measurements. Journal of Geophysical Research B: Solid Earth110(11), 1–14.
    [Google Scholar]
  28. NyquistJ.E. and CorryC.E.2002. Self‐potential; The ugly duckling of environmental geophysics. The Leading Edge21(5), 446–451.
    [Google Scholar]
  29. RevilA., CaryL., FanQ., FinizolaA. and TrolardF.2005. Self‐potential signals associated with preferential ground water flow pathways in a buried paleo‐channel. Geophysical Research Letters32, L07401.
    [Google Scholar]
  30. RevilA., FinizolaA., PiscitelliS., RizzoE., RicciT., CrespyA.et al. 2008. Inner structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy) revealed by high resolution electric resistivity tomography coupled with self‐potential, temperature, and CO2 diffuse degassing measurements. Journal of Geophysical Research113, B07207.
    [Google Scholar]
  31. RevilA., FinizolaA., SortinoF. and RipepeM.2004. Geophysical investigations at Stromboli volcano, Italy: Implications for ground water flow and paroxysmal activity. Geophysical Journal International157, 426–440.
    [Google Scholar]
  32. RevilA., PezardP.A. and GloverP.W.J.1999a. Streaming potential in porous media: 1. Theory of the zeta potential. Journal of Geophysical Research104, 20021–20031.
    [Google Scholar]
  33. RevilA., SchwaegerH., CathlesL.M. and ManhardtP.D.1999b. Streaming potential in porous media: 2. Theory and application to geothermal systems. Journal of Geophysical Research104, 20033–20048.
    [Google Scholar]
  34. RozyckiA., Ruiz FonticiellaJ.M. and CuadraA.2006. Detection and evaluation of horizontal fractures in earth dams using the self‐potential method. Engineering Geology82(3), 145–153.
    [Google Scholar]
  35. SatoM. and MooneyH.M.1960. The electrochemical mechanism of sulfide self potentials. Geophysics25(1), 226–249.
    [Google Scholar]
  36. StollJ., BigalkeJ. and GrabnerE.W.1995. Electrochemical modelling of self‐potential anomalies. Surveys in Geophysics16(1), 107–120.
    [Google Scholar]
  37. TsengP.S.1990. A systolic array parallelizing compiler. Journal of Parallel and Distributed Computing9(2), 116–127.
    [Google Scholar]
  38. Ulusoyİ., LabazuyP., AydarE., ErsoyO. and ÇubukçuE.2008. Structure of the Nemrut caldera (Eastern Anatolia, Turkey) and associated hydrothermal fluid circulation. Journal of Volcanololgy and Geothermal Research174(4), 269–283.
    [Google Scholar]
  39. WishartD.N., SlaterL.D. and GatesA.E.2006. Self potential improves characterization of hydraulically‐active fractures from azimuthal geoelectrical measurements. Geophysical Research Letters33, L17314.
    [Google Scholar]
  40. WynnJ.C. and SherwoodS.I.1984. The self‐potential (SP) method: An inexpensive reconnaissance and archaeological mapping tool. Journal of Field Archaeology11, 195–204.
    [Google Scholar]
  41. ZlotnickiJ., BoubonG., ViodéJ.‐P., DelarueJ.‐F., MilleA. and BruéreF.1998. Hydrothermal circulation beneath Mount Pelée inferred by self potential surveying. Structural and tectonic implications. Journal of Volcanology and Geothermal Research84, 73–91.
    [Google Scholar]
  42. ZlotnickiJ. and NishidaY.2003. Review on morphological insights of self‐potential anomalies on volcanoes. Surveys in Geophysics24(4), 291–338.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2012061
Loading
/content/journals/10.3997/1873-0604.2012061
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error