1887
Volume 11 Number 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

If field applications of the electrostatic method are limited to roughly the first ten metres due to the necessity of staying in a low‐induction number domain, the possibilities it opens in urban area surveying, dry hole resistivity logging, non‐destructive testing and laboratory studies of the complex resistivity justify the design of a new multi‐frequency resistivity meter presenting a very low‐input capacitance and high‐phase sensitivity. After a first series of sample measurements in the laboratory, the new resistivity meter was tested in two different field contexts: the mapping of building remains in a Gallo‐Roman archaeological site under a flat meadow and the assessment of the thickness of anthropogenic layers in a town. The first test allowed a direct comparison with previous galvanic resistivity measurements and proved a very good agreement between the magnitude and spatial distribution of electrical resistivity. The second test established its reliable measuring abilities in a disturbed environment.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2012063
2012-11-01
2020-04-05
Loading full text...

Full text loading...

References

  1. BenderitterY., JolivetA., MounirA. and TabbaghA.1994. Application of the electrostatic quadripole to sounding in the hectometric range of depth. Journal of Applied Geophysics31, 1–6.
    [Google Scholar]
  2. DabasM.2009. Theory and practice of the new fast electrical imaging system ARP©. In: Seeing the Unseen, Geophysics and Landscape Archaeology (eds Campana and Piro ), pp. 105–126. CRC Press.
    [Google Scholar]
  3. DabasM., CamerlynckC., FreixasI. and CampsP.2000. Simultaneous use of electrostatic quadrupole and GPR in urban context: Investigation of the basement of the Cathedral of Girona (Catalunya, Spain). Geophysics65, 526–532. doi:10.1190/1.1444747
    [Google Scholar]
  4. DabasM. and FavardA.2004. Fast imaging of a Romano‐Celtic temple with a decimetric resolution, 1ha in 2hours?10th European Meeting of Environmental and Engineering Geophysics, September 6– 9, Utrecht.
    [Google Scholar]
  5. DabasM., GuyardL. and LepertT.2005. Gisacum revisité: Croisement géophysique et archéologie. Géophysique et archéologie, Dossiers de l’Archéologie308, 52–61.
    [Google Scholar]
  6. FéchantC., BertrandJ., MechlerP. and SouffachéB.1997. Mesure de la résistance mécanique de pierres de taille in‐situ. Revue d’Archéométrie21, 45–53.
    [Google Scholar]
  7. GrardR. and TabbaghA.1991. A mobile four‐electrode array and its application to the electrical survey of planetary grounds at shallow depths. Journal of Gophysical Research96, B‐3, 4117–4123.
    [Google Scholar]
  8. GuérinR., BégassatP., BenderitterY., DavidJ., TabbaghA. and ThiryM.2002. Electrical resistivity measurements by electromagnetic slingram mapping, electrical 2D and 3D imaging, and electrostatic logging: A tool for studying an old waste landfill. 8th annual meeting of the Environmental and Engineering Geophysical Society – European Section, Aveiro (Portugal), 08‐12/09/2002.
  9. GuyardL. and LepertT.1999. Le Vieil‐Evreux, ville sanctuaire gallo‐romaine. Archeologia359, 20–29.
    [Google Scholar]
  10. KurasO., BeamishD., MeldrumP.I. and OgilvyR.D.2006. Fundamentals of capacitive resistivity technique. Geophysics71(3), 135–152.
    [Google Scholar]
  11. KurasO., MeldrumP.I., BeamishD., OgilvyR.D. and LalaD.2007. Capacitive resistivity imaging with towed arrays. Journal of Environmental and Engineering Geophysics12(3), 267–279.
    [Google Scholar]
  12. LerouxV.2000. Utilisation d’électrodes capacitives pour la prospection électrique en forage . Thèse, Université de Rennes I, 210 pages.
    [Google Scholar]
  13. MwenifumboC.J., BarrashW. and KnollM.D.2009. Capacitive conductivity logging and electrical stratigraphy in a high‐resitivity aquifer, Boise Hydrogeophysical Research Site. Geophysics74(3), E125–E133.
    [Google Scholar]
  14. OkayG.2011. Caractérisation des hétérogénéités texturales et hydriques des géomatériaux argileux par la méthode de Polarisation Provoquée: Application à la station expérimentale de Tournemire. Thèse Université Pierre et Marie Curie, 342 pages.
    [Google Scholar]
  15. PanissodC., DabasM., HesseA., JolivetA., TabbaghJ. and TabbaghA.1998. Recent developments in shallow electrical and electrostatic prospecting using mobile arrays. Geophysics63(5), 1542–1550.
    [Google Scholar]
  16. ShimaH., SakashitaS. and KobayashiT.1996. Development of non‐contact data acquisition techniques in electrical and electromagnetic explorations. Journal of Applied Geophysics35, 167–173.
    [Google Scholar]
  17. SouffachéB., CosenzaP., FlageulS., PencoleJ.P., SeladjiS. and TabbaghA.2010. Electrostatic multipole for electrical resistivity measurements at decimetric scale. Journal of Applied Geophysics71(1), 6–12.
    [Google Scholar]
  18. TabbaghA., CosenzaP., GhorbaniA., GuérinR. and FlorschN.2009. Modelling of Maxwell‐Wagner Induced Polarisation Amplitude for Clayey Materials. Journal of Applied Geophysics67(2), 109–113.
    [Google Scholar]
  19. TabbaghA., HesseA. and GrardR.1993. Determination of electrical properties of the ground shallow depth with an electrostatic quadrupole: field trials on archaeological sites. Geophysical Prospecting41(4), 579–597.
    [Google Scholar]
  20. TabbaghA. and PanissodC.2000. 1D complete calculation for electrostatic soundings interpretation. Geophysical Prospecting48(3), 511–520.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2012063
Loading
/content/journals/10.3997/1873-0604.2012063
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error