1887
Volume 11 Number 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Quick clay is a known hazard in formerly‐glaciated coastal areas in e.g., Norway, Sweden and Canada. In this paper, we review the physical properties of quick clays in order to find a suitable, integrated and multi‐disciplinary approach to improve our possibilities to accurately identify the occurrence of quick clay and map its extent both vertically and laterally. As no single geophysical method yields optimal information, one should combine a variety of geophysical methods with geotechnical data ( measurements using Cone Penetration Testing (CPTU), Seismic CPTU (SCPTU) and Resistivity CPTU (RCPTU); laboratory tests) for an in‐depth quick‐clay assessment at a given site. In this respect, geophysical data are used to fill the gaps between geotechnical boreholes providing ground‐truth. Such an integrated and multi‐disciplinary approach brings us closer to 2D or pseudo‐3D site characterization for quick clays and as such, an improved assessment of the potential hazard they pose. The integrated approach is applied in practice on two Norwegian quick‐clay sites. The first site, Hvittingfoss, was remediated against potential landslides in 2008 whereas the second one, Rissa, was the scene of a major quick‐clay landslide in 1978, quick clays being still present over a large area. The collected data and preliminary site characterizations illustrate the high diversity as well as the complexity and clearly emphasize the need for higher resolution, careful imaging and calibration of the data in order to accomplish the assessment of a quick‐clay hazard.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2012064
2012-11-01
2020-04-05
Loading full text...

Full text loading...

References

  1. AaslandR.2010. Kartlegging av kvikkleire med 2D resitivitet og RCPTI Rissa.Master Thesis at the Department of Civil and Transport Engineering, NTNU.
    [Google Scholar]
  2. BentleyS.P. and SmalleyI.J.1978. Inter‐particle cementation in Canadian post‐glacial clays and the problem of high sensitivity (St > 50). Sedimentology25, 297–302.
    [Google Scholar]
  3. BjerrumL.1954. Geotechnical properties of Norwegian marine clays. Géotechnique4, 49–69.
    [Google Scholar]
  4. BrandE.W. and BrennerR.P.1981. Soft Clay Engineering.Elsevier.
    [Google Scholar]
  5. CabreraJ.G and SmalleyI.J.1973. Quick clays as products of glacial action: A new approach to their nature, geology, distribution and geotechnical properties. Engineering Geology7, 115–133.
    [Google Scholar]
  6. ConlonR.J.1966. Landslide in Toulnustouc river, Quebec. Canadian Geotechnical Journal3, 113–144.
    [Google Scholar]
  7. CrawfordC.B.1963. Cohesion in an undisturbed sensitive clay. Géotechnique13, 132–144.
    [Google Scholar]
  8. DahlinT.1993. On the automation of 2D resistivity surveying for engineering and environmental applications.Doctoral Thesis, Lund University, Sweden
    [Google Scholar]
  9. DahlinT., LarssonR., LerouxV., LarssonR. and RankkaK.2005. Resistivity imaging for mapping of quick clays for landslide risk assessment. In: Proceedings of 11th Annual Meeting EAGE —Environmental and Engineering Geophysics, Palermo, Italy, 4−7 September, 2005. A046.
    [Google Scholar]
  10. DonohueS., LongM., O’ConnorP., HelleT.E., PfaffhuberA.A. and RømoenM.2012. Multi‐method geophysical mapping of quick clay. Near Surface Geophysics10, 207–219.
    [Google Scholar]
  11. GregersenO.1981. The quick clay landslide in Rissa, Norway. NGI Publication135, 1–6.
    [Google Scholar]
  12. GregersenO.2008. Program for økt sikkerhet mot leirskred − Metode for kartlegging og klassifisering avfaresoner, kvikkleire. Norwegian Geotechnical Institute Report 20001008‐2 (3rd revision). 24p. (in Norwegian)
    [Google Scholar]
  13. GregersenO. and LøkenT.1983. Mapping of quick clay landslide hazard in Norway. Criteria and experiences. SGI Technical Report17, 61–174.
    [Google Scholar]
  14. L’HeureuxJ.S.2012a. A study of the retrogressive behaviour and mobility of Norwegian quick clay landslides. Proceedings of the 11th International and 2nd North American Symposium on Landslides, Banff, Canada.
    [Google Scholar]
  15. L’HeureuxJ.S., EilertsenR.S., GlimstadS., IsslerD., SolbergI.‐L. and HarbitzC.B.2012b. The 1978 quick clay landslide at Rissa, mid‐Norway: Subaqueous morphology and tsunami simulations. In: Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research (eds Y.Yamada et al.), p. 31. Springer Science+Business Media B.V. doi: 10.1007/978‐94‐007‐2162‐3_45.
    [Google Scholar]
  16. LokeM.H.2010. Res2DInv ver 3.59.102. Geoelectrical Imaging 2D and 3D. Instruction Manual. Geotomo Software, www.geoelectrical.com.
    [Google Scholar]
  17. LongM., DonohueS., L’HeureuxJ.S., SolbergI.L., RønningJ.S., LimacherR.et al.2012. Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Canadian Geotechnical Journal49(10).
    [Google Scholar]
  18. LunneT., RobertsonP.K. and PowelJ.J.M.1997. Cone Penetration Testing in Geotechnical Practice.Chapman and Hall, London.
    [Google Scholar]
  19. MitchellJ.K.1976. Fundamentals of Soil Behavior.John Wiley and Sons, Inc.
    [Google Scholar]
  20. MitchellR.J. and MarkellA.R.1974. Flowslides in sensitive soils. Canadian Geotechnical Journal11(11), 31.
    [Google Scholar]
  21. MoholdtR.2008. Fossnes på Hvittingfoss, Vurdering av skredfare og sikringstiltak. NGI Report, 20071564‐2 30.
    [Google Scholar]
  22. MoonC.F.1979. Concerning the relation between energy and cementation in quick clay disturbance. Engineering Geology14, 197–207.
    [Google Scholar]
  23. NGF (Norsk Geoteknisk Forening)
    NGF (Norsk Geoteknisk Forening) . 1975. Retningslinjer for presentasjon av geotekniske undersøkelser. (in Norwegian)
    [Google Scholar]
  24. ParkC.B., MillerD.M. and XiaJ.1999. Multichannel analysis of surface waves. Geophysics64(3), 800–808.
    [Google Scholar]
  25. PennerE.1965. A study of sensitivity in Leda clay. Canadian Journal of Earth Sciences2, 425–441.
    [Google Scholar]
  26. QuigleyR.M.1980. Geology, mineralogy and geochemistry of Canadian soft soils: A geotechnical perspective. Canadian Geotechnical Journal17, 261–285.
    [Google Scholar]
  27. QuigleyR.M. and OgunbadejoT.A.1972. Clay layer fabric and oedometer consolidation of a soft varved clay. Revue canadienne de Géotechnique9, 165–175.
    [Google Scholar]
  28. RankkaK., Anderson‐SköldY., HulténC., LarssonR., LerouxV. and DahlinT.2004. Quick clay in Sweden. SGI Technical Report65.
    [Google Scholar]
  29. ReiteA.J.1987. Rissa. Kvartærgeologisk kart 1522 II ‐ M 1:50 000. Beskrivelse. NGU Skrifter82.
    [Google Scholar]
  30. RømoenM., PfaffhuberA.A., KarlsrudK. and HelleH.E.2010. Resistivity on marine sediments retrieved from RCPTU soundings: A Norwegian case study. CPT’10: 2nd International Symposium on Cone Penetration Testing, Huntington Beach, California, USA.
    [Google Scholar]
  31. RosenqvistI.T.1953. Considerations on the sensitivity of Norwegian quick clays. Géotechnique3, 165–200.
    [Google Scholar]
  32. RosenqvistI.T.1955. Investigations in the clay‐electrolyte‐water system. Norwegian Geotechnical Institute Publication9.
    [Google Scholar]
  33. RosenqvistI.T.1977. A general theory for quick clay properties. Proceedings of the 3rd European Clay Conference, Oslo, 215–228.
    [Google Scholar]
  34. SandmeierK.J.2010. ReflexW, 5.5 ed, Karlsruhe. Processing of seismic, acoustic or electromagnetic reflection, refraction and transmission data.
    [Google Scholar]
  35. SauvinG., BazinS., VannesteM., LecomteI. and PfaffhuberA.A.2011. Towards Joint Inversion/Interpretation for Landslide‐prone Areas in Norway − Integrating Geophysics and Geotechnique. Expanded Abstracts. Near Surface − 17th European Meeting of Environmental and Engineering Geophysics.
    [Google Scholar]
  36. SmalleyI.J.1971. Nature of quick clays. Nature231.
    [Google Scholar]
  37. SöderblomR.1966. Chemical aspect of quick clay formation. Engineering Geology1, 415–431.
    [Google Scholar]
  38. SöderblomR.1969. Salt in Swedish clays and its importance for quick clay formation. SGI Technical Report22.
    [Google Scholar]
  39. SöderblomR.1974. Organic matter in Swedish clays and its importance for quick clay formation. SGI Technical Report55.
    [Google Scholar]
  40. SolbergI.L.2007. Geological, geomorphological and geophysical investigations of areas prone to clay slides: Examples from Buvika, Mid Norway. PhD thesis, Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, p. 213.
    [Google Scholar]
  41. SolbergI.L., AaslandR., DalseggE., HansenL., L’HeureuxJ.S. and RønningJ.S.2010a. Kvikkleireproblematikk i Rissa ‐ Bruk av resistivitetsmålinger.Fjellsprengningsdagen, Bergmekanikkog Geoteknikkdagen, Oslo 25−26.11.2010, 37.
    [Google Scholar]
  42. SolbergI.L., DalseggE. and HansenL.2010b. Geofysiske målinger for løsmassekartlegging i Rissa, Sør‐Trøndelag. NGU Report 2010.045
    [Google Scholar]
  43. SolbergI.L., DalseggE. and L’HeureuxJ.S.2012a. Resistivitetsmålinger for løsmassekartlegging ved Rein kirke i Rissa, Sør‐Trøndelag. Data og tolkninger. NGU Report 2012.018.
    [Google Scholar]
  44. SolbergI.L., HansenL., RønningJ.S., HaugenE., DalseggE. and TønnesenJ.F.2012b. Combined geophysical and geotechnical approach to ground investigations and hazard zonation of a quick clay area, Mid Norway. Bulletin of Engineering Geology and the Environment71, 119–133.
    [Google Scholar]
  45. TalmeO.1968. Clay sensitivity and chemical stabilisation. Byggforskingsrådet Technical Report56, Stockholm.
    [Google Scholar]
  46. TavenasF., FlonP., LeroueilS. and LebuisJ.1983. Remolding energy and risk of retrogression in sensitive clays. Symposium on slopes on soft clays, Linkoping. Swedish Geotechnical Institute Report17, 205–262.
    [Google Scholar]
  47. TorranceJ.K.1974. A laboratory investigation of the effect of leaching on the compressibility and shear strength of Norwegian marine clays. Géotechnique24, 155–173.
    [Google Scholar]
  48. TorranceJ.K.1978. Post‐depositional changes in the pore‐water chemistry of the sensitive marine clays of the Ottawa area, eastern Canada. Engineering Geology14, 135–147.
    [Google Scholar]
  49. TorranceJ.K.1983. Towards a general model of quick clay development. Sedimentology30, 547–555.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2012064
Loading
/content/journals/10.3997/1873-0604.2012064
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error