1887
Volume 12 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Processes that control permafrost warming in Alpine regions are still not completely understood. Recently, geoelectrical monitoring has emerged as a useful tool to investigate thawing and freezing processes. However, high resistive environments and harsh environmental conditions pose very unfavourable conditions for automated resistivity measurements. Based on the results of several test studies, an improved data acquisition system for geoelectrical monitoring of frozen soils was developed. Furthermore, the implementation of algorithms for statistical analysis of raw data time series led to a significant improvement in the reliability of inversion results. At two Alpine sites, namely Molltaler Glacier and Magnetkopfl/Kitzsteinhorn, the adapted system was tested at soil temperature conditions between 0°C and –12°C. Data was continuously collected at both locations over nearly a full seasonal cycle. The results showed an almost linear dependency of resistivity and temperature at values above –0.5°C. At lower temperatures, the relation was non‐linear, indicating that the reduction of porosity due to the shrinking of connected brine channels was the dominating process that determined the value of resistivity. Based on the derived results, further improvements were suggested, especially for measurements at soil temperatures below –4.5°C as low injection currents make it extremely challenging to gather these.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2013057
2013-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/nsg/12/1/nsg2013057.html?itemId=/content/journals/10.3997/1873-0604.2013057&mimeType=html&fmt=ahah

References

  1. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of AIME146(1), 54–62. doi: 10.2118/942054‐G
    [Google Scholar]
  2. BlaschekR., HördtA. and KemnaA.2008. A new sensitivity‐controlled focusing regularization scheme for the inversion of induced polarization based on the minimum gradient support. Geophysics73(2), F45–F54. doi: 10.1190/1.2824820
    [Google Scholar]
  3. CarantiJ.M. and IllingworthA.J.1983. Frequency Dependence of the Surface Conductivity of Ice. Journal of Physical Chemistry87, 4078–4083. doi:10.1021/j100244a016
    [Google Scholar]
  4. DahlinT. and ZhouB.2004. A numerical comparision of 2D Resistivity imaging with 10 electrode arrays. Geophysical Prospecting52(5), 379–398. doi: 10.1111/j.1365‐2478.2004.00423.x32
    [Google Scholar]
  5. DaviesM., HamzaO. and HarrisC.2003. Physical modelling of permafrost warming in rock slopes. Proceedings of the 8th International Conference on Permafrost,Zurich, Switzerland, 169–174.
    [Google Scholar]
  6. De KoningM. and AntonelliA.2007. On the Trapping of Bjerrum Defects in Ice Ih: The Case of the Molecular Vacancy. Journal of Physical Chemistry B,111(43), 12537–12542.
    [Google Scholar]
  7. DerjaguinB.V. and ChuraevN.V.1978. The Theory of Frost Heaving. Journal of Colloid Interface Sciences67, 391–396.
    [Google Scholar]
  8. DerjaguinB.V. and ChuraevN.V.1986. Flow of non‐freezing water interlayers and frost heaving. Cold Regions Science and Technology12, 57–66.
    [Google Scholar]
  9. EdwardsS.1976. A modified Pseudosection for Resistivity and IP. Geophysics42(5), 1020–1036.
    [Google Scholar]
  10. FrenchH.M, 1996. The Periglacial Environment ‐ Second Edition. Harlow, Longman, 341.
    [Google Scholar]
  11. FrolovA.D.2003. A physical model of frozen ground considered as a complex macrosystem. Proceedings of the 8th International Conference on Permafrost,Zurich, Switzerland, 259–264.
    [Google Scholar]
  12. GlenJ.W.1974. The physics of ice. USA Cold Regions Research and Engineering Laboratory, Monograph II‐C2a.
    [Google Scholar]
  13. GlenJ.W.1975. Mechanics of ice. USA Cold Regions Research and Engineering Laboratory, Monograph Il‐C2b.
    [Google Scholar]
  14. GlenJ.W. and ParenJ.G.1975. The electrical properties of snow and ice. Journal of Glaciology15(73), 15–38.
    [Google Scholar]
  15. GrimmR.E., StillmanD.E., DecS.F. and BullockM.A.2008. Low‐Frequency Electrical Properties of Polycrystalline Saline Ice and Salt Hydrates. Journal of Physical Chemistry B112, 15382–15390.
    [Google Scholar]
  16. GruberS. and HaeberliW.2007. Permafrost in steep bedrock slopes and its temperature‐related destabilization following climate change. Journal of Geophysical Research112, F02S13.
    [Google Scholar]
  17. HaeberliW., HoelzleM. and MaischM.1998. Gletscher ‐ Schlüsselindikatoren der globalen Klimaånderung. In: Wissenschaftliche Fakten, (eds J.L.Lozàn , H.Graszl and P.Hupfer ). Warnsignal Klima, Hamburg, 213 p.
    [Google Scholar]
  18. HaehnelR.B.2001. Advances in ice control at corps hydraulic structures. Ice Engineering31.
    [Google Scholar]
  19. HarrisC., DaviesM.C.R. and EtzelmuellerB.2001. The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate. Permafrost and Periglacial Processes12, 145–156. doi: 10.1002/ppp.376
    [Google Scholar]
  20. HartmeyerI., KeuschnigM., DelleskeR. and SchrottL.2012. Reconstruction of the Magnetkoepfl rockfall event – Detecting rock fall release zones using terrestrial laser scanning, Hohe Tauern, Austria. Geophysical Research Abstracts14, EGU2012–12488.
    [Google Scholar]
  21. HauckC.2002. Frozen ground monitoring using DC resistivity tomography. Geophysical Research Letters29(21).
    [Google Scholar]
  22. HauckC., Vonder MühllD. and MaurerH.2003. Permafrost monitoring using time‐lapse resistivity tomography. Proceedings of the 8th International Conference on Permafrost,Zurich, Switzerland, 361–366.
    [Google Scholar]
  23. HauckC. and KneiselC.2006. Application of capacitively‐coupled and DC electrical resistivity imaging for mountain permafrost studies. Permafrost and Periglacial Processes17, 169–177. doi: 10.1002/ ppp. 555
    [Google Scholar]
  24. HausmannH., SupperR., ItaA., RomerA. and MistelbauerT.2010. The application of D.C. resistivity sounding in two Alpine ice caves. Proceedings of the 4th International Workshop on Ice Caves, June 5–11th, 2010, Obertraun, Austria.
    [Google Scholar]
  25. HermansT., VandenbohedeA., LebbeL., MartinR., KemnaA., BeaujeanJ.et al. 2012. Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data. Journal of Hydrology438–139, 168–180. doi:10.1016/j.jhydrol.2012.03.021.
    [Google Scholar]
  26. HilbichC., HauckC., ScherlerM., SchudelL., VolkschI., HoelzleM.et al. 2008. Monitoring mountain permafrost evolution using electrical resistivity tomography: A seven year study of seasonal, annual and long‐term variations at Schilthorn, Swiss Alps. Journal of Geophysical Research, Earth Surface113, F01S90. doi:10.1029/2007JF000799.
    [Google Scholar]
  27. HilbichC., MarescotL., HauckC., LokeM.H. and MäusbacherR.2009. Applicability of Electrical Resistivity Tomography Monitoring to Coarse Blocky and Ice‐rich Permafrost Landforms. Permafrost and Periglacial Processes20(3), 269–284.
    [Google Scholar]
  28. HilbichC., FussC. and HauckC.2011. Automated time‐lapse ERT for improved process analysis and monitoring of frozen ground. Permafrost and Periglacial Processes22(4), 306–319. doi: 10.1002/ pp.732.
    [Google Scholar]
  29. HobbsP.V.1974. Ice Physics.Oxford, United Kingdom: Clarendon Press.
    [Google Scholar]
  30. HoelzleM., WagnerS., KääbA. and Vonder MühllD.1998. Surface movement and internal deformation of ice‐rock mixtures within rock glaciers at Pontresina‐Schafberg, Upper Engadin, Switzerland. Proceedings of the 7th International Conference on Permafrost,Yellowknife, Canada, 465–471.
    [Google Scholar]
  31. IkedaA., MatsuokaN. and KääbA.2003. A rapidly moving small rock glacier at the lower limit of mountain permafrost in the Swiss Alps. Proceedings of the 8th International Conference on Permafrost,Zurich, Switzerland, 455–460.
    [Google Scholar]
  32. JaccardC.1959. Étude théorique et expérimentale des propriétés électriques de la glace. Helvetica Physico Acta32, 89–128.
    [Google Scholar]
  33. KamarovI.A.2003. Effect of microscopic heterogeneities on water transfer in frozen ground, Proceedings of the 8th International Conference on Permafrost,Zurich, Switzerland, 579–583.
    [Google Scholar]
  34. KamarovI.A., MironenkoM.V. and KiyashkoN.V.2012. Refinement of the standard basis for computational evaluation of thermophysical properties of saline soils and cryopegs. Soil Mechanics and Foundation Engineering49(2), 73–80.
    [Google Scholar]
  35. KemnaA., VanderborghtJ., KulessaB. and VereeckenH.2002. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology267(3–4), 125–146.
    [Google Scholar]
  36. KeuschnigM., HartmeyerI., SchmidjellA. and SchrottL.2012. The adaptation of iButtons® for near‐surface rock temperature and thermal offset measurements in a high alpine environment ‐ Instrumentation and first results, Kitzsteinhorn (3203 m), Hohe Tauern, Austria. Geophysical Research Abstracts14, EGU2012–12981.
    [Google Scholar]
  37. KhusnatdinovN.N., PetrenkoV.F. and LeveyC.G.1997. Electrical Properties of the Ice/Solid Interface. Journal of Physical Chemistry B101, 6212–6214.
    [Google Scholar]
  38. KimJ.H., YiM.J., ParkS.G. and KimJ.G.2009. 4‐D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. Journal of Applied Geophysics68, 522–532.
    [Google Scholar]
  39. Kim, J.‐H., YiM.‐J., AhnH.‐Y. and KimK.‐S.2010. 4‐D Inversion of Resistivity Monitoring Data Using L1 Norm Minimization. Paper presented at Near Surface 2010, A15, Zurich, Swiss.
    [Google Scholar]
  40. KimJ.‐H., SupperR., TsourlosP. and YiM.‐J.2013a. 4‐D Inversion of Resistivity Monitoring Data Using L1 Norm Minimization. Geophysical Journal International, accepted.
    [Google Scholar]
  41. KimJ.‐H., SupperR., JochumB., OttowitzD. and YiM.‐J.2013b. A new measurement protocol of DC resistivity data. Geophysical Research Letters, submitted.
    [Google Scholar]
  42. KneiselC., HauckC., FortierR. and MorrmanB.2008. Advances in Geophysical Methods for Permafrost Investigations. Permafrost and Periglacial Processes19, 15–178. doi: 10.1002/ppp.616
    [Google Scholar]
  43. KoefoedO.1979. Geosounding Principles 1, Methods in Geochemistry and Geophysics 14A.Elsevier.
    [Google Scholar]
  44. KrautblatterM. and HauckC.2007. Electrical resistivity tomography monitoring of permafrost in solid rock walls. Journal of Geophysical Research112, F02S20. doi:10.1029/2006JF000546.
    [Google Scholar]
  45. KrautblatterM., VerleysdonkS., Flores‐OrozcoA. and KemnaA.2010. Temperature‐calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps). Journal of Geophysical Research, Earth Surface115, F02003. doi:10.1029/2008JF001209.
    [Google Scholar]
  46. Kroisleitner Ch., ReisenhoferS. and SchönerW.2011. Chapter 2: Climate Change in the European Alps. In: Thermal and geomorphic permafrost response to present and Future climate change in the European Alps, (eds A.Kellerer‐Pirklbauer et al.). APermaNET project, final report of Action 5.3. Online Publication, p.16–27. ISBN 978‐2‐903095‐58‐1
    [Google Scholar]
  47. KurasO., MeldrumP.I., HaslamE.P., WilkinsonP.B., KrautblatterM., MurtonJ.B. et al. 2011. Time‐lapse Capacitive Resistivity Imaging –A Novel Methodology for the Monitoring of Permafrost Processes in Bedrock. Near Surface 2011 ‐ 17th European Meeting of Environmental and Engineering Geophysics,Leicester, UK, 12‐14 September 2011.
    [Google Scholar]
  48. LaxtonS. and CoatesJ.2010. Geophysical and Borehole investigations of permafrost conditions associated with compromised infrastructure in Dawson and Ross River, Yukon. In: Yukon Exploration and Geology 2010, (eds K.E.MacFarlane , L.H.Weston and C.Relfs ). Yukon Geological Survey, p. 135–148.
    [Google Scholar]
  49. LewkowiczA.G., EtzelmuellerB. and SmithS.L.2011. Characteristics of Discontinuous Permafrost based on the Ground Temperature Measurements and Electrical Resistivity Tomography, Southern Yukon, Canada. Permafrost and Periglacial Processes22, 320–342. doi: 10.1002/ppp.703.
    [Google Scholar]
  50. LokeM.H., AcworthI. and DahlinT.2003. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics34, 182–187.
    [Google Scholar]
  51. LokeM.H., DahlinT. and RuckerD.F.2013. Smoothness‐constrained time‐lapse inversion of data from 3‐D resistivity surveys. Near Surface Geophysics12(1).
    [Google Scholar]
  52. LukinY.I., MironovV.L. and KomarovS.A.2008. Investigation of the Dielectric Spectra from Moist Soils During Freezing‐Thawing Processes. Russian Physics Journal51(9), 907–911.
    [Google Scholar]
  53. MarescotL., LokeM.H., ChapellierD., DelaloyeR., LambielC. and ReynardE.2003. Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method. Near Surface Geophysics1(2), 57–67. doi: 10.3997/1873‐0604.2002007
    [Google Scholar]
  54. MatsuokaN., IkedaA., HirakawaK. and WatanabeT.2003. Contemporary periglacial processes in the Swiss Alps: seasonal, inter‐annual and long‐term variations. Proceedings of the 8th International Conference on Permafrost,Zurich, Switzerland, p. 735–740.
    [Google Scholar]
  55. MarionG.M. and GrantS.A.1994. FREZCHEM: A Chemical‐Thermodynamic Model for Aqueous Solutions at Subzero Temperatures. U.S: Army Cold Regions Research and Engineering Laboratory, Special Report 94–18.
    [Google Scholar]
  56. MooreJ.C. and MaenoN.1993. Dielectric properties of frozen clay and silt soils. Cold Regions Science and Technology21, 265–273.
    [Google Scholar]
  57. MurrmannR.P.1973. Ionic Mobility in Permafrost. Proceedings of the 2nd International Conference on Permafrost.Yakutsk, Washington, D.C., National Academy of Sciences, p. 352–359.
    [Google Scholar]
  58. NoetzliJ., HoelzleM. and HaeberliW.2003. Mountain permafrost and recent Alpine rock‐fall events: a GISbased approach to determine critical factors. Proceedings of the 8th International Conference on Permafrost,Zurich, Switzerland, 827–832.
    [Google Scholar]
  59. NoetzliJ., HilbichC., HauckC., HoelzleM. and GruberS.2008. Comparison of Simulated 2D Temperature Profiles with Time‐Lapse Electrical Resistivity Data at the Schilthorn Crest, Switzerland. Proceedings of the 9th International Conference on Permafrost.Institute of Northern Engineering, Fairbanks, Alaska, USA, 1293–1298.
    [Google Scholar]
  60. OldenborgerG.A.2010. Electrical Geophysics Applied to Assessing Permafrost Conditions in Pangnirtung, Nunavut. Geological Survey of Canada, Open File 6725, 39 p.
    [Google Scholar]
  61. OldenburgD.W. and LiY.G.1999. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics64(2), 403–416.
    [Google Scholar]
  62. PetrenkoV.1993. Electrical Properties of Ice, Special Report 93–20, U.S.Army Cold Regions Research, New Hampshire.
    [Google Scholar]
  63. PetrenkoV.F. and RyzhkinI.A.1997. Surface States of Charge Carriers and Electrical Properties of the Surface Layer of Ice. Journal of Physical Chemistry B101, 6285–6289.
    [Google Scholar]
  64. PetrenkoV. and QiS.1999. Reduction of ice adhesion to stainless steel by ice electrolysis. Journal of Applied Physics86 (19), 5450–5454.
    [Google Scholar]
  65. PetrenkoV. F. and WhitworthR. W.1999. The Physics of Ice.Oxford University Press, 384 pp. ISBN 0‐19851‐895‐1.
    [Google Scholar]
  66. PetrenkoV. and CourvilleZ.2000. Active de‐icing coating for aerofoils. Proceedings of the 38th Aerospace Science Meeting and Exhibition,Reno, Nevada.
    [Google Scholar]
  67. PetrenkoV.F. and RyzhkinI.A.2011. Non‐Joule Heating of Ice in an Electric Field. Journal of Physical Chemistry A115, 6202–6207.
    [Google Scholar]
  68. RiboliniA. and FabreD.2007. Shallow active layer temperature and DC resistivity of a rock glacier in the Argentera Massif, Maritime Alps, Italy. Zeitschrift für Geomorphologie, Supplementbände51(2), 55–77.
    [Google Scholar]
  69. RödderT. and KneiselC.2012. Permafrost mapping using quasi‐3D resistivity imaging, Murtèl, Swiss Alps. Near Surface Geophysics10(2), 117–127. doi: 10.3997/1873‐0604.2011029
    [Google Scholar]
  70. SassO.2004. Rock moisture fluctuations during freeze‐thaw cycles: Preliminary results from electrical resistivity measurements. Polar Geography28(1), 13–31.
    [Google Scholar]
  71. SchneiderS., HauckC. and HoelzleM.2011. Geophysical monitoring of different permafrost forms within the Murtèl‐ Corvatsch Area, Upper Engadin. Proceedings of the 9th Swiss Geoscience Meeting,Open Cryosphere Session.
    [Google Scholar]
  72. SlaterL., BinleyA., DailyW. and JohnsonR.2000. Crosshole electrical imaging of a controlled saline tracer injection. Journal of Applied Geophysics44, 85–102.
    [Google Scholar]
  73. SmithM.W.1993. Climatic change and permafrost. In: Canada’s Cold Environments, (eds H.M.French and O.Slaymaker ). Montreal: McGill‐Queen’s University Press, 291–311.
    [Google Scholar]
  74. StillmanD.E., GrimmR.E. and DecS.F.2010. Low‐Frequency Electrical Properties of Ice‐Silicate Mixtures. Journal of Physical Chemistry B114, 6065–6073.
    [Google Scholar]
  75. SupperR. and RomerA.2003. New Achievements in Developing a High Speed Geoelectrical Monitoring System for Landslide Monitoring. Proceedings of the 9th Environmental and Engineering Geophysical Society Meeting,Prague.
    [Google Scholar]
  76. SupperR. and RomerA.2004. New Achievements in Developing a High Speed Geoelectrical Monitoring System for Landslide Monitoring (GEOMONITOR2D). Proceedings of the SAGEEP 2004 Meeting,Colorado Springs.
    [Google Scholar]
  77. SupperR., RomerA., BieberG. and JaritzW.2005. A Complex Geoscientiffic Strategy for Landslide Hazard Mitigation – Case Study Sibratsgfäll. Proceedings of Near Surface Geophysics Conference,Palermo.
    [Google Scholar]
  78. SupperR., AhlA., RömerA., JochumB. and BieberG.2007a. A complex geo‐scientific strategy for landslide hazard mitigation – from airborne mapping to ground monitoring. Advances in Geosciences14, 1–6.
    [Google Scholar]
  79. SupperR., ItaA., RomerA., JochumB. and OttowitzD.2010. Geomon4D – a new high speed tool for geoelectrical monitoring in permafrost regions. Proceedings of the Permafrost Workshop Obergurgl,14–15 Oktober.
    [Google Scholar]
  80. VanhalaH., LintinenP. and OjalaA.2009. Electrical Resistivity Study of Permafrost on Ridnitšohkka Fell in Northwest Lapland, Finland. Geophysica45(1–2), 103–118.
    [Google Scholar]
  81. WolffE.W., MinersW.D., MooreJ.C. and ParenJ.G.1997. Factors controlling the electrical conductivity of ice from polar regions – a summary. Journal of Physical Chemistry B101(32), 6090–6094.
    [Google Scholar]
  82. ZimmermannM. and HaeberliW.1992. Climatic change and debris flow activity in high‐mountain areas ‐ a case study in the Swiss Alps. Catena Supplement22, 59–72.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2013057
Loading
/content/journals/10.3997/1873-0604.2013057
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error