1887
Volume 12 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

ABSTRACT

Frozen ground characteristics resolved by annual, seasonal/monthly and daily electrical resistivity monitoring are presented based on case studies from three alpine sites in the Swiss Alps with different surface conditions and subsurface process dynamics.

Data acquisition is achieved by different set‐ups ranging from low‐cost to automated and more expensive monitoring strategies. To ensure the reproducibility of measurement results a robust setup is required within the rough surface conditions of alpine environments, and this constitutes a fundamental precondition for time‐lapse measurements.

The selected different monitoring approaches allow for a detection and analysis of processes related to frozen ground dynamics on varying timescales. The interpretation of the geophysical data is improved by temperature measurements from various data loggers and borehole data.

All three approaches allowed detection of the interface between frozen and unfrozen ground. The variation of the frequency of measurements enabled exploration of the specific permafrost‐related problems. At one site, the multi‐annual resistivity distribution at the end of the thawing period revealed fairly stable permafrost conditions, while at the second site, year‐round measurements showed extremely divergent evolution of resistivity values in the subsurface throughout the measurement period, which could be ascribed to different site‐specific environmental parameters. Using measurements with daily resolution at the third field site, the rapid decrease in subsurface resistivity values due to the infiltration of meltwater in spring could be documented. The presented results show that the different monitoring set‐ups have their justification and are able to monitor timedependent subsurface dynamics within the scale of their temporal resolution.

The operation of an automated monitoring system allows for very efficient observation especially of short‐time processes within the active layer and the frozen ground below, the major advantage in comparison to non‐automated monitoring approaches. However, the system is cost‐intensive, requires an extensive infrastructure, and is more prone to environmental forces. For monitoring the inter‐annual and long‐term permafrost evolution, application of a fixed monitoring set‐up that is accessible throughout the year and measured manually has proven to be a robust and cost‐efficient alternative. Focusing on the long‐term permafrost evolution, set‐ups using fixed electrodes and measurements conducted as needed with a brought‐along cable is a legitimate approach. Hence, for studies in alpine permafrost environments, choice of the monitoring set‐up remains a question of the scientific problem, infrastructure facilities, and cost‐efficiency.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2013067
2013-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/nsg/12/1/nsg2013067.html?itemId=/content/journals/10.3997/1873-0604.2013067&mimeType=html&fmt=ahah

References

  1. BächlerE.1930. Der verwünschte oder verhexte Wald im Brüeltobel.Appenzeller Kalender, Jg. 209.
    [Google Scholar]
  2. BinleyA., WinshipP., WestL.J., PokarM. and MiddletonR.2002. Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. Journal of Hydrology267, 160–172. doi:10.1016/S0022‐1694(02)00147‐6
    [Google Scholar]
  3. CassianiG., BrunoV., VillaA., FusiN. and BinleyA.M.2006. A saline trace test monitored via time‐lapse surface electrical resistivity tomography. Journal of Applied Geophysics59, 244–259. doi:10.1016/j.jappgeo.2005.10.007
    [Google Scholar]
  4. DailyW.D., RamirezA.L., LaBrecqueD.J. and NitaoJ.1992. Electrical resistivity tomography of vadose water movement. Water Resources Research28, 1429–1442. doi:10.1029/91WR03087
    [Google Scholar]
  5. Day‐LewisF.D., SinghaK. and BinleyA.M.2005. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution‐dependent limitations. Journal of Geophysical Research110, B08206. doi:10.1029/2004JB003569
    [Google Scholar]
  6. DeianaR., CassianiG., KemnaA., VillaA., BrunoV. and BaglianiA.2007. An experiment of non‐invasive characterization of the vadose zone via water injection and cross‐hole time‐lapse geophysical monitoring. Near Surface Geophysics5, 183–194. doi:10.3997/1873‐0604.2006030
    [Google Scholar]
  7. FelberT.1884. Ein Zwergwald im Kanton Appenzell. Jahrbuch des Schweizerischen Alpenclubs19, 574–578.
    [Google Scholar]
  8. FrenchH. and BinleyA.2004. Snowmelt infiltration: monitoring temporal and spatial variability using time‐lapse electrical resistivity. Journal of Hydrology297, 174–186. doi:10.1016/j.jhydrol.2004.04.005
    [Google Scholar]
  9. FurrerE.1966. Kümmerfichtenbestände und Kaltluftströme in den Alpen der Ost‐ und Innerschweiz. Schweizerische Zeitschrift für Forstwesen10, 720–733.
    [Google Scholar]
  10. HarrisS.A. and PedersenD.E.1998. Thermal regimes beneath coarse blocky materials. Permafrost and Periglacial Processes9, 107–120. doi:10.1002/(SICI)1099‐1530(199804/06)9:2<107:AIDPPP277>3.0.CO;2‐G
    [Google Scholar]
  11. HauckC.2002. Frozen ground monitoring using DC resistivity tomography. Geophysical Research Letters29, 2016. doi:10.1029/2002GL014995
    [Google Scholar]
  12. HauckC.
    and KneiselC. (eds) 2008. Applied Geophysics in Periglacial Environments.Cambridge University Press, Cambridge.
    [Google Scholar]
  13. HauckC., BöttcherM. and MaurerH.2011. A new model for estimating subsurface ice content based on combined electrical and seismic data sets. The Cryosphere5, 453–468. doi:10.5194/tc‐5‐453‐2011
    [Google Scholar]
  14. HilbichC., FussC. and HauckC.2011. Automated time‐lapse ERT for improved process analysis and monitoring of frozen ground. Permafrost and Periglacial Processes22, 306–319. doi:10.1002/ pp.732
    [Google Scholar]
  15. HilbichC., HauckC., HoelzleM., ScherlerM., SchudelL., VölkschI.et al. 2008. Monitoring mountain permafrost evolution using electrical resistivity tomography: A 7‐year study of seasonal, annual, and long. term variations at Schilthorn, Swiss Alps. Journal of Geophysical Research113. doi:10.1029/2007JF000799
    [Google Scholar]
  16. HilbichC., MarescotL., HauckC., LokeM.H. and MäusbacherR.2009. Applicability of electrical resistivity tomography monitoring to coarse blocky and ice‐rich permafrost landforms. Permafrost and Periglacial Processes20, 269–284. doi:10.1002/ppp.652
    [Google Scholar]
  17. KemnaA., KulessaB. and VereeckenH.2002. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology267, 125–146. doi:10.1016/S0022‐1694(02)00145‐2
    [Google Scholar]
  18. KneiselC.2006. Assessment of subsurface lithology in mountain environments using 2D resistivity imaging. Geomorphology80, 32–44. doi:10.1016/j.geomorph.2005.09.012
    [Google Scholar]
  19. KneiselC.2010. The nature and dynamics of frozen ground in alpine and subarctic periglacial environments. The Holocene20, 423–445. doi:10.1177/0959683609353432
    [Google Scholar]
  20. KneiselC., HaeberliW. and BaumhauerR.1997. Aktuelle Gletscherveränderungen und Permafrostverbreitung in den Ostschweizer Alpen, Oberengadin/St. Moritz. In: Trierer Geographische Studien, pp. 19–32.
    [Google Scholar]
  21. KneiselC., HauckC., FortierR. and MoormanB.2008. Advances in geophysical methods for permafrost investigations. Permafrost and Periglacial Processes19, 157–178. doi:10.1002/ppp.616
    [Google Scholar]
  22. KrautblatterM.2010. Temperature‐calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps). Journal of Geophysical Research115, F02003. doi:10.1029/2008JF001209
    [Google Scholar]
  23. KrautblatterM. and HauckC.2007. Electrical resistivity tomography monitoring of permafrost in solid rock walls. Journal of Geophysical Research112, F02S20. doi:10.1029/2006JF000546
    [Google Scholar]
  24. KurasO., PritchardJ.D., MeldrumP.I., ChambersJ.E., WilkinsonP.B., OgilvyR.D.et al. 2009. Monitoring hydraulic processes with automated time‐lapse electrical resistivity tomography (ALERT). Comptes Rendus Geoscience – Special Issue on Hydrogeophysics341, 868–885. doi:10.1016/j.crte.2009.07.010
    [Google Scholar]
  25. LerouxV. and Dahlin, T.2006. Time‐lapse resistivity investigations for imaging saltwater transport in glaciofluvial deposits. Environmental Geology49, 347–358. doi:10.1007/s00254‐005‐0070‐7
    [Google Scholar]
  26. LokeM.H. and BarkerR.D.1995. Least squares deconvolution of apparent resistivity pseudosections. Geophysics60, 1682–1690.
    [Google Scholar]
  27. LokeM.H., AcworthI. and DahlinT.2003. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics34, 182–187.
    [Google Scholar]
  28. MarescotL., LokeM.H., ChapellierD., DelaloyeR., LambielC. and ReynardE.2003. Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method. Near Surface Geophysics1, 57–67. doi:10.3997/1873‐0604.2002007
    [Google Scholar]
  29. MichotD., BenderitterY., DorignyA., NicoullaudB., KingD. and TabbaghA.2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research39, 1138. doi:10.1029/2002WR001581
    [Google Scholar]
  30. OldenburgD.W. and LiY.1999. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics64, 403–416. doi:10.1190/1.1444545
    [Google Scholar]
  31. Peter‐BorieM., SirieixC., NaudetV. and RissJ.2011. Electrical resistivity monitoring with buried electrodes and cables: noise estimation with repeatability tests. Near Surface Geophysics9, 369–380. doi:10.3997/1873‐0604.2011013
    [Google Scholar]
  32. RingsJ., ScheuermannA., PrekoK. and HauckC.2008. Soil water content monitoring on a dike model using electrical resistivity tomography. Near Surface Geophysics6, 123–132. doi:10.3997/1873‐0604.2007038
    [Google Scholar]
  33. RödderT. and KneiselC.2012. Permafrost mapping using quasi‐3D resistivity imaging, Murtèl, Swiss Alps. Near Surface Geophysics10, 117–127. doi:10.3997/1873‐0604.2011029
    [Google Scholar]
  34. SchwindtD. and KneiselC.2011. Optimisation of quasi‐3D electrical resistivity imaging – application and inversion for investigating heterogeneous mountain permafrost. The Cryosphere Discussion5, 3383–3421. doi:10.5194/tcd‐5‐3383‐2011
    [Google Scholar]
  35. ScottW.J., SellmannP.V. and HunterJ.A.1990. Geophysics in the study of permafrost. In: Geotechnical and Environmental Geophysics, (ed. S.H.Ward ). Tulsa, Oklahoma, pp. 355–384.
    [Google Scholar]
  36. ShurY., HinkelK.M. and NelsonF.E.2005. The transient layer: implications for geocryology and climate‐change science. Permafrost and Periglacial Processes16, 5–17. doi:10.1002/ppp.518
    [Google Scholar]
  37. SjödahlP., DahlinT., JohanssonS. and LokeM.2008. Resistivity monitoring for leakage and internal erosion detection at Hällby embankment dam. Journal of Applied Geophysics65, 155–164. doi:10.1016/j.jappgeo.2008.07.003
    [Google Scholar]
  38. TsourlosP., OgilvyR., MeldrumP. and WilliamsG.2003. Time‐lapse monitoring in single boreholes using electrical resistivity tomography. Journal of Environmental and Engineering Geophysics8, 1–14.
    [Google Scholar]
  39. van EverdingenR.2005. Multi‐language glossary of permafrost and related ground‐ice terms, Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology.
    [Google Scholar]
  40. WakoniggH.1996. Unterkühlte Schutthalden.Arbeiten aus dem Institut für Geographie der Universität Graz, Universität Graz.
    [Google Scholar]
  41. WegmannG.1995. Permafrostvorkommen auf geringer Meereshöhe. Eine Fallstudie im Brüeltobel (AI).Unveröffentlichte Diplomarbeit, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich, Zürich.
    [Google Scholar]
  42. WilkinsonP.B., MeldrumP.I., KurasO., ChambersJ.E., HolyoakeS.J. and OgilvyR.D.2010. High‐resolution Electrical Resistivity Tomography monitoring of a tracer test in a confined aquifer. Journal of Applied Geophysics70, 268–276. doi:10.1016/j.jappgeo.2009.08.001.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2013067
Loading
/content/journals/10.3997/1873-0604.2013067
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error