1887
Volume 12 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Magnetic resonance sounding (MRS) provides quantitative hydrogeological information on hydrostratigraphy and hydraulic parameters of subsurface (e.g., flow and storage property of aquifers) that can be integrated in distributed hydrologic models. The hydraulic parameters are typically obtained by pumping tests. In this study, we propose an MRS integration method based on optimizing MRS estimates of aquifer hydraulic parameters through hydrologic model calibration.

The proposed MRS integration method was applied in the 73 km2 Carrizal Catchment in Spain, characterized by a shallow unconfined aquifer with an unknown aquifer bottom. 12 MRS survey results were inverted with Samovar 11.3, schematized and integrated in the transient, distributed, coupled, hydrologic, MARMITES‐MODFLOW model. As the aquifer bottom was unknown, the aquifer was schematized into one unconfined layer of uniform thickness. For that layer, MRS estimators of specific yield and transmissivity/hydraulic conductivity were calculated as weighted averages of the inverted MRS layers. The MRS integration with hydrologic model was carried out by introducing multipliers of specific yield and transmissivity/hydraulic conductivity that were optimized during transient model calibration using 11 time‐series piezometric observation points. The optimized multipliers were 1.0 for specific yield and 3.5*10‐9 for hydraulic conductivity. These multipliers were used, and can be used in future MRS investigations in the Carrizal Catchment (and/or adjacent area with similar hydrogeological conditions), to convert MRS survey results into aquifer hydraulic parameters.

The proposed method of MRS data integration in the hydrologic model of Carrizal Catchment not only allowed us to calibrate the model but also to confirm the functional capability of MRS in quantitative groundwater assessment. Most importantly however, it demonstrated that if pumping tests are not available, the use of MRS integrated in distributed coupled hydrological models, or even in standalone groundwater models, provides a valuable aquifer parameterization alternative.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2014003
2014-01-01
2020-02-23
Loading full text...

Full text loading...

References

  1. AllenR.G., PereiraL.S., RaesD. and SmithM.1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO, Rome.
    [Google Scholar]
  2. AndersenT.R., PoulsenS.E., ChristensenS. and JørgensenF.2012. A synthetic study of geophysics‐based modelling of groundwater flow in catchments with a buried valley. Hydrogeology Journal20. doi:10.1007/s10040‐012‐0924‐5
    [Google Scholar]
  3. Bauer‐GottweinP., GondweB.N., ChristiansenL., HerckenrathD., KgotlhangL. and ZimmermannS.2010. Hydrogeophysical exploration of three‐dimensional salinity anomalies with the time‐domain electromagnetic method (tdem). Journal of Hydrology380, 318–329.
    [Google Scholar]
  4. BoucherM., FavreauG., DescloitresM., VouillamozJ.M., MassuelS., NazoumouY. et al. 2009. Contribution of geophysical surveys to groundwater modelling of a porous aquifer in semiarid Ntiger: An overview. Comptes Rendus Geoscience341, 800–809. doi:10.1016/j. crte.2009.07.008
    [Google Scholar]
  5. BoucherM., FavreauG., DescloitresM., VouillamozJ.M., MassuelS., NazoumouY. et al. 2009. Contribution of geophysical surveys to groundwater modelling of a porous aquifer in semiarid niger: An overview. Comptes Rendus – Geoscience341, 800–809.
    [Google Scholar]
  6. BoucherM., FavreauG., NazoumouY., CappelaereB., MassuelS. and LegchenkoA.2012. Constraining groundwater modeling with magnetic resonance soundings. Ground Water50, 775–784. doi:10.1111/j.1745–6584.2011.00891.x.
    [Google Scholar]
  7. BoucherM., FavreauG., VouillamozJ.M., NazoumouY. and LegchenkoA.2009. Estimating specific yield and transmissivity with magnetic resonance sounding in an unconfined sandstone aquifer (Niger). Hydrogeology Journal17, 1805–1815. doi:10.1007/s10040‐009‐0447‐x
    [Google Scholar]
  8. BurschilT., ScheerW., KirschR. and WiederholdH.2012. Compiling geophysical and geological information into a 3‐d model of the glacially‐affected island of Föhr. Hydrology and Earth System Sciences16, 3485–3498. doi:10.5194/hess‐16‐3485‐2012
    [Google Scholar]
  9. CeballosA., Martínez‐FernándezJ., SantosF. and AlonsoP.2002. Soilwater behaviour of sandy soils under semi‐arid conditions in the Duero Basin (Spain). Journal of Arid Environments51, 501–519.
    [Google Scholar]
  10. DamD. and ChristensenS.2003. Including geophysical data in groundwater model inverse calibration. Ground Water41, 178–189.
    [Google Scholar]
  11. DanielsenJ., DahlinT., OwenR., MangeyaP. and AukenE.2007. Geophysical and hydrogeologic investigation of groundwater in the karoo stratigraphic sequence at sawmills in Northern Matabeleland, zimbabwe: A case history. Hydrogeology Journal15, 945–960.
    [Google Scholar]
  12. DingmanS.L.2002. Physical Hydrology. Prentice Hall, Upper Saddle River.
    [Google Scholar]
  13. FetterC.W.2001. Applied Hydrogeology. Merril Publishing, Upper Saddle River, NJ.
    [Google Scholar]
  14. FrancesA.P. and LubczynskiM.W. (2011) Topsoil thickness prediction at the catchment scale by integration of invasive sampling, surface geophysics, remote sensing and statistical modeling. Journal of Hydrology405(1–2), 31–47.
    [Google Scholar]
  15. FrancésA.P., Reyes‐AcostaJ.L., BaluganiE., van der TolC. and LubczynskiM.W.2011. Towards an improved assessment of the water balance at the catchment scale: A coupled model approach. In: Estudios en la zona no saturada del suelo: volumen X : ZNS11 proceedings, 19‐21 October 2011, Salamanca, Spain: e‐book / editor J.M.Fernández , , N.S.Martin . Salamanca: Universidad de Salamanca, 2011. 370 p. ISBN 978‐84‐694‐6642‐1. pp. 321–326.
  16. FranceseR., MazzariniF., BistacchiA., MorelliG., PasquarèG., PraticelliN.et al. 2009. A structural and geophysical approach to the study of fractured aquifers in the Scansano‐Magliano in Toscana Ridge, Southern Tuscany, Italy. Hydrogeology Journal17, 1233–1246.
    [Google Scholar]
  17. FurmanA.2008. Modeling coupled surface‐subsurface flow processes: A review. Vadose Zone Journal7, 741–756. doi:10.2136/vzj2007.0065
    [Google Scholar]
  18. HerckenrathD.2012. Informing groundwater models with near‐surface geophysical data. Ph.D Thesis, Technical University of Denmark.
    [Google Scholar]
  19. Instituto Geológico y Minero de España
    Instituto Geológico y Minero de España . 1978. Mapa geológico de España. Hoja 426 (Fuentesauco). In: Mapa geológico de España.
    [Google Scholar]
  20. Instituto Geológico y Minero de España
    Instituto Geológico y Minero de España . 2000. Mapa geológico de España. Hoja 425 (Villamor de los Escuderos). In: Mapa geológico de España.
    [Google Scholar]
  21. IRIS‐Instruments
    IRIS‐Instruments . 2012. www.Iris‐instruments.Com.
  22. KravchenkoA. and BullockD.G.1999. A comparative study of interpolation methods for mapping soil properties. Journal of Agronomy91, 393–400.
    [Google Scholar]
  23. KunianskyE.L., LoweryM.A. and CampbellB.G.2009. How processing digital elevation models can affect simulated water budgets. Ground Water47, 97–107.
    [Google Scholar]
  24. LegchenkoA.2011. Samovar software 11.3 User’s Guide.
  25. LegchenkoA., Baltassat, J.‐M., Bobachev, A., Martin, C., Robain, H. and Vouillamoz, J.‐M.2004. Magnetic resonance sounding applied to aquifer characterization. Ground Water42, 363–373. doi:10.1111/j.1745‐6584.2004.tb02684.x
    [Google Scholar]
  26. LlamasM. and Martínez‐SantosP.2005. Intensive groundwater use: Silent revolution and potential source of social conflicts. Editorial. Journal of Water Resources Planning and Management131, 337–341.
    [Google Scholar]
  27. LubczynskiM. and RoyJ.2003. Hydrogeological interpretation and potential of the new magnetic resonance sounding (MRS) method. Journal of Hydrology283, 19–40.
    [Google Scholar]
  28. LubczynskiM. and RoyJ.2004. Magnetic resonance sounding: New method for ground water assessment. Ground Water42, 291–303. doi:10.1111/j.1745‐6584.2004.tb02675.x
    [Google Scholar]
  29. LubczynskiM.W.2011. Groundwater evapotranspiration ‐ underestimated role of tree transpiration and bare soil evaporation in groundwater balances of dry lands. In: Groundwater evapotranspiration — underestimated role of tree transpiration and bare soil evaporation in groundwater balances of dry lands, (eds A.Baba , G.Tayfur , O.Gunduz , K.W.F.Howard , M.J.Friedel and A.Chambel ), pp. 183–190. Springer.
    [Google Scholar]
  30. LubczynskiM.W. and GurwinJ.2005. Integration of various data sources for transient groundwater modeling with spatio‐temporally variable fluxes ‐ Sardon study case, Spain. Journal of Hydrology306, 71–96.
    [Google Scholar]
  31. LubczynskiM.W. and RoyJ.2005. MRS contribution to hydrogeological system parameterization. Near Surface Geophysics3, 131–139.
    [Google Scholar]
  32. LubczynskiM.W. and RoyJ.2007. Use of MRS for hydrogeological system parameterization and modeling. Boletin Geologico y Minero118, 509–530.
    [Google Scholar]
  33. MahmoudzadehM.R., FrancésA.P., LubczynskiM.W. and LambotS. (2012) Using ground penetrating radar to investigate the water table depth in weathered granites: Sardon case study, Spain. Journal of Applied Geophysics79, 17–26.
    [Google Scholar]
  34. Martínez‐FernándezJ. and CeballosA.2005. Mean soil moisture estimation using temporal stability analysis. Journal of Hydrology312, 28–38. doi:10.1016/j.jhydrol.2005.02.007
    [Google Scholar]
  35. MohnkeO. and YaramanciU.2008. Pore size distributions and hydraulic conductivities of rocks derived from magnetic resonance sounding relaxation data using multi‐exponential decay time inversion. Journal of Applied Geophysics66, 73–81.
    [Google Scholar]
  36. MoriasiD.N., ArnoldJ.G., Van LiewM.W., BingnerR.L., HarmelR.D. and VeithL.V.T.2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE50, 885–900.
    [Google Scholar]
  37. NiswongerR.G., PandayS. and IbarakiM.2011. MODFLOW‐NWT, a newton formulation for MODFLOW‐2005. In: MODFLOW‐NWT, a Newton formulation for MODFLOW‐2005, pp. 44. U.S. Geological Survey
    [Google Scholar]
  38. NiswongerR.G., PrudicD.E. and ReganR.S.2006. Documentation of the unsaturated‐zone flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW‐2005. In: Documentation of the unsaturated‐zone flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW‐2005, Vol. 6. USGS.
    [Google Scholar]
  39. PlataJ.L. and RubioF.M.2007. Basic theory of the magnetic resonance sounding method. Boletin Geologico y Minero118, 441–458.
    [Google Scholar]
  40. PlataJ.L. and RubioF.M.2008. The use of MRS in the determination of hydraulic transmissivity: The case of alluvial aquifers. Journal of Applied Geophysics66, 128–139. doi:10.1016/j.jappgeo.2008.04.001
    [Google Scholar]
  41. PlataJ.L., UriarteC. and Martínez‐FernandezJ.2009. Use of MRS to obtain hydraulic parameters and to setup a groundwater model: application in the Arenales shallow aquifer (in Spanish). Uso de los srm para la obtención de parámetros hidráulicos y su implementación en la modelización de aguas subterráneas: Aplicación en el acuífero superficial de los arenales. Informe n° 63790. Centro de Documentación del IGME, 119.
  42. RobinsonT.P. and MetternichtG.2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture50, 97–108.
    [Google Scholar]
  43. RoyJ. and LubczynskiM.2003. The magnetic resonance sounding technique and its use for groundwater investigations. Hydrogeology Journal11, 455–465. doi:10.1007/s10040‐003‐0254‐8.
    [Google Scholar]
  44. RoyJ. and LubczynskiM.W.2005. MRS multi — exponential decay analysis: Aquifer pore ‐ size distribution and vadose zone characterization. Near Surface Geophysics3, 287–298.
    [Google Scholar]
  45. TrushkinD.V., ShushakovO.A. and LegchenkoA.V.1994. The potential of a noise‐reducing antenna for surface NMR groundwater surveys in the earth’s magnetic field. Geophysical Prospecting42, 855–862.
    [Google Scholar]
  46. Uriarte BlancoC., Plata TorresJ.L., Díaz‐CurielJ. and Martínez FernándezJ.2011. The use of magnetic resonance sounding in shallow aquifers in the Duero River Basin (in Spanish). Aplicación de sondeos de resonancia magnética en acuíferos superficiales de la Cuenca del Duero Boletin geologico y minero122, 345–362.
    [Google Scholar]
  47. VouillamozJ.M.2003. Characterization of aquifers by a non‐invasive technique: the magnetic resonance sounding. These de l’Universite de Paris XI, Orsay, 315. (in French) La caractérisation des aquifères par une mèthode noninvasive: Les sondages par resonance magnètique protonique.
    [Google Scholar]
  48. VouillamozJ.M., BaltassatJ.M., GirardJ.F., PlataJ. and LegchenkoA.2007. Hydrogeological experience in the use of MRS. Boletin Geologico y Minero118, 531–550.
    [Google Scholar]
  49. VouillamozJ.M., ChatenouxB., MathieuF., BaltassatJ.M. and LegchenkoA.2007. Efficiency of joint use of MRS and ves to characterize coastal aquifer in Myanmar. Journal of Applied Geophysics61, 142–154. doi:10.1016/j.jappgeo.2006.06.003
    [Google Scholar]
  50. VouillamozJ.M., SokhengS., BruyereO., CaronD. and ArnoutL.2012. Towards a better estimate of storage properties of aquifer with magnetic resonance sounding. Journal of Hydrology458–459, 51–58. doi:10.1016/j.jhydrol.2012.06.044
    [Google Scholar]
  51. WalshD., GrunewaldE., ZhangH., FerreP. and HinnellA.2012. Recent advancements in NMR for characterizing the vadose zone. In: Recent advancements in NMR for characterizing the vadose zone. 5th International Workshop on Magnetic Resonance in the Subsurface, September 25 –27, 2012, Hannover, Germany.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2014003
Loading
/content/journals/10.3997/1873-0604.2014003
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error