1887
Volume 12 Number 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Airborne electromagnetic methods (AEM) have become an important part of groundwater mapping in a wide range of geological settings. However, as for all geophysical methods, the results of the inversions are non‐unique and it is therefore relevant to include a priori information in order to obtain the most realistic geological inversion outcome. Despite the extensive use of AEM, only a few studies describe the effect of including a priori information in large‐scale AEM surveys. In this study, ancillary information from seismic and borehole data are used as a priori information. The basis for the study is a densely spaced airborne transient electromagnetic dataset (SkyTEM) from a 100 km2 area in the western part of Denmark. Six different inversions are performed, and these are formulated as blocky and smooth inversions with different amounts of a priori information in the deepest part of the sections. The use of a priori information has a significant influence on the interpretation of the sections in the lowermost part of the sequence. Furthermore, the middle part of the sections, which are not constrained by the a priori information, show a significant change through the different inversions. Thus, the study shows that the inclusion of a priori information to the deeper part, significantly enhances the understanding of the geology both in the intermediate and deep levels.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2014024
2014-01-01
2024-03-28
Loading full text...

Full text loading...

References

  1. AndersenS.T.1965. Interglacialer og Interstadialer i Danmarks kvartær. Medd. fra Dansk Geol. Forening15, 486–506.
    [Google Scholar]
  2. AukenE. and ChristiansenA.V.2004. Layered and laterally constrained 2D inversion of resistivity data. Geophysics69, 752–761.
    [Google Scholar]
  3. AukenE., ChristiansenA.V., JacobsenB.H., FogedN. and Sørensen K.I. 2005. Piecewise 1D laterally constrained inversion of resistivity data. Geophysical Prospecting53, 497–506. doi: 10.1111/J.1365‐2478.2005.00486.x
    [Google Scholar]
  4. AukenE., ChristiansenA.V., WestergaardJ.H., KirkegaardC., FogedN. and ViezzoliA.2009a. An integrated processing scheme for highresolution airborne electromagnetic surveys, the SkyTEM system. Exploration Geophysics40, 184–192. doi: 10.1071/EG08128
    [Google Scholar]
  5. AukenE., ViezzoliA. and ChristiansenA.V.2009b. A single software for processing, inversion, and presentation of AEM data of different systems: the Aarhus Workbench. ASEG Extended Abstracts,1–5.
    [Google Scholar]
  6. BrodieR. and SambridgeM.2006. A holistic approach to inversion of frequency‐domain airborne EM data. Geophysics71, G301–G312.
    [Google Scholar]
  7. BurschilT., WiederholdH. and AukenE.2012. Seismic results as a‐priori knowledge for airborne TEM data inversion – a case study. Journal of Applied Geophysics80, 121–128. doi: 10.1016/j.jappgeo.2012.02.003
    [Google Scholar]
  8. ChristiansenA.V. and AukenE.2009. Presenting a free, highly flexible inversion code. EAGE 15th European Meeting of Environmental and Engineering Geophysics,Dublin.
    [Google Scholar]
  9. ChristiansenA.V. and AukenE.2012. A global measure for depth of investigation. Geophysics77, WB171–WB177.
    [Google Scholar]
  10. ChristiansenA.V., AukenE. and Sørensen K. 2006. The transient electromagnetic method. In: Groundwater Geophysics – a Tool for Hydrogeology, (ed. R.Kirsch), 179–225. Springer, Germany.
    [Google Scholar]
  11. d’OzouvilleN., AukenE., SorensenK., VioletteS., de MarsilyG., DeffontainesB.et al.2008. Extensive perched aquifer and structural implications revealed by 3D resistivity mapping in a Galapagos volcano. Earth and Planetary Science Letters269, 517–521. doi: 10.1016/j.epsl.2008.03.011
    [Google Scholar]
  12. DybkjierK.2011. Palynologisk undersøgelse af 12 prøver fra boringen DGU nr. 113.1855 ved Vestkœrvej, syd for Ølgod. GEUS notat, 1–11.
    [Google Scholar]
  13. EllisR.G. and OldenburgD.W.1994. Applied Geophysical Inversion. Geophysical Journal International116, 5–11.
    [Google Scholar]
  14. FriborgR. and ThomsenS.1999. Kortlægning af Ribe Formationen. Teknisk Rapport.
    [Google Scholar]
  15. GabrielG., KirschR., SiemonB. and WiederholdH.2003. Geophysical investigation of buried Pleistocene subglacial valleys in Northern Germany. Journal of Applied Geophysics53, 159–180.
    [Google Scholar]
  16. Houmark‐NielsenM.2004. The Pleistocene of Denmark: a review of stratigraphy and glaciation history. In: Quaternary Glaciations – Extent and Chronology, (eds J.Ehlers and P.L.Gibbard ), 35–46. Elsevier.
    [Google Scholar]
  17. HøyerA.‐S., MøllerI. and JørgensenF.2013a. Challenges in geophysical mapping of glaciotectonic structures. Geophysics78, B287–B303. doi: 10.1190/GEO2012‐0473.1
    [Google Scholar]
  18. HøyerA.‐S., JørgensenF., JacobsenP.R. and PiotrowskiJ.2013b. Deeply rooted glaciotectonism in western Denmark: Geological composition, structural characteristics and the origin of Varde hill‐island. Journal of Quaternary Science28, 683–696. doi: 10.1002/jqs.2667
    [Google Scholar]
  19. HøyerA.‐S., Lykke‐AndersenH., JørgensenF. and AukenE.2011. Combined interpretation of SkyTEM and high‐resolution seismic data. Physics and Chemistry of the Earth36, 1386–1397. doi: 10.1016/j.pce.2011.01.001
    [Google Scholar]
  20. JacksonD.D. and Matsu’ura M. 1985. A Bayesian Approach to Nonlinear Inversion. Jounal of Geophysical Research90, 581–591. doi: 10.1029/JB090iB01p00581
    [Google Scholar]
  21. JørgensenF., Lykke‐AndersenH., SandersenP.B.E., AukenE. and NørmarkE.2003a. Geophysical investigations of buried Quaternary valleys in Denmark: An integrated application of transient electromagnetic soundings, reflection seismic surveys and exploratory drillings.Journal of Applied Geophysics53, 215–228. doi: 10.1016/j.jap‐pgeo.2003.08.017
    [Google Scholar]
  22. JørgensenF., SandersenP.B.E. and AukenE.2003b. Imaging buried Quaternary valleys using the transient electromagnetic method. Journal of Applied Geophysics53, 199–213. doi: 10.1016/j.jappgeo.2003.08.016
    [Google Scholar]
  23. KirkegaardC., SonnenborgT.O., AukenE. and JørgensenF.2011. Salinity distribution in heterogeneous coastal aquifers mapped by airborne electromagnetics. Vadose Zone Journal10, 125–135. doi: 10.2136/vzj2010.0038
    [Google Scholar]
  24. LarsenG. and KronborgC.1994. Geologisk set; Det mellemste Jylland.Geografforlaget.
    [Google Scholar]
  25. LarsenG. and Sand‐JensenK.2006. Naturen i Danmark: Geologien.Gyldendal, 549.
    [Google Scholar]
  26. MejuM.A.1994. Biased estimation: a simple framework for inversion and uncertainty analysis with prior information. Geophysical Journal International119, 521–528.
    [Google Scholar]
  27. MenkeW.1989. Geophysical Data Analysis: Discrete Inverse Theory.Academic Press, San Diego,
    [Google Scholar]
  28. NyboeN.S., JørgensenF. and SørensenK.2010. Integrated inversion of TEM and seismic data facilitated by high penetration depths of a segmented receiver setup. Near Surface Geophysics8, 467–473.
    [Google Scholar]
  29. PullanS.E.2004. The role of geophysics in 3D mapping. Workshop on Geological Models for Groundwater; Geological Society of America,Salt Lake City, UT.
    [Google Scholar]
  30. RasmussenE.S., DybkjærK. and PiaseckiS.2010. Lithostratigraphy of the Upper Oligocene – Miocene succession of Denmark.Geological Survey of Denmark and Greenland Bulletin22, 92 + 9 plates.
    [Google Scholar]
  31. RasmussenL.B.1966. Biostratigraphical studies on the marine younger Miocene of Denmark; based on the molluscan faunas.Geological Survey of Denmark and Greenland, 358.
    [Google Scholar]
  32. SapiaV., OldenborgerG. and ViezzoliA.2012. Incorporating a‐priori information into AEM inversion for geological and hydrogeological mapping of the Spiritwood valley aquifer, Manitoba, Canada. Atti del XXXI Convegno Nazionale del GNGTS,Potenza, Italy, 194–199.
    [Google Scholar]
  33. ScalesJ.A. and TenorioL.2001. Prior information and uncertainty in inverse problems. Geophysics66, 389–397. doi: 10.1190/1.1444930
    [Google Scholar]
  34. SengpielK.P. and SiemonB.1997. Groundwater exploration in the Namib Desert using helicopter‐borne electromagnetics (Hubschraub‐erelektromagnetik zur grundwassererkundung in der Namib‐Wüste/ Namibia). Zeitschrift fur Angewandte Geologie43, 130–136.
    [Google Scholar]
  35. ShtivelmanV. and GoldmanM.2000. Integration of shallow reflection seismics and time domain electromagnetics for detailed study of the coastal aquifer int he Nitzanim area of Israel. Journal of Applied Geophysics44, 197–215.
    [Google Scholar]
  36. SteuerA., SiemonB. and EberleD.2008. Airborne and ground‐based electromagnetic investigations of the freshwater potential in the tsunami‐hit area Sigli, Northern Sumatra. Journal of Environmental and Engineering Geophysics13, 39–48. doi: 10.2113/JEEG13.1.39
    [Google Scholar]
  37. SupperR., MotschkaK., AhiA., Bauer‐GottweinP., GondweB., AlonsoG.M.et al.2009. Spatial mapping of submerged cave systems by means of airborne electromagnetics: An emerging technology to support protection of endangered karst aquifers. Near Surface Geophysics7, 613–627. doi: 10.3997/1873‐0604.2009008
    [Google Scholar]
  38. SørensenK.I. and AukenE.2004. SkyTEM – a new high‐resolution helicopter transient electromagnetic system. Exploration Geophysics35, 191–199.
    [Google Scholar]
  39. TarantolaA. and ValetteB.1982. Generalized nonlinear inverse problems solved using a least squares criterion. Reviews of Geophysics and Space Physics20, 219–232.
    [Google Scholar]
  40. TeatiniP., TosiL., ViezzoliA., BaradelloL., ZecchinM. and SilvestriS.2011. Understanding the hydrogeology of the Venice Lagoon subsurface with airborne electromagnetics. Journal of Hydrology411, 342–354. doi: 10.1016/j.jhydrol.2011.10.017
    [Google Scholar]
  41. TikhonovA.N. and ArseninV.Y.1977. Solutions of Ill‐posed Problems.Winston, 258.
    [Google Scholar]
  42. van der VeenM., SpitzerR., GreenA.G. and WildP.2001. Design and application of a towed land‐streamer system for cost‐effective 2‐D and pseudo‐3‐D shallow seismic data acquisition. Geophysics66, 482–500.
    [Google Scholar]
  43. Vangkilde‐PedersenT., DahlJ.F. and RinggaardJ.2006. Five years of experience with landstreamer vibroseis and comparison with conventional seismic data acquisition. Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP),Seattle.
    [Google Scholar]
  44. Vangkilde‐PedersenT., SkjellerupP., RinggaardJ. and JensenJ.F.2003. Pulled array seismic (PAS) – A new method for shallow reflection seismic data acquisition. EAGE,Stavanger.
    [Google Scholar]
  45. ViezzoliA., AukenE. and MundayT.2009. Spatially constrained inversion for quasi 3D modelling of airborne electromagnetic data an application for environmental assessment in the Lower Murray Region of South Australia. Exploration Geophysics40, 173–183. doi: 10.1071/EG08027
    [Google Scholar]
  46. ViezzoliA., ChristiansenA.V., AukenE. and SørensenK.2008. Quasi‐3D modeling of airborne TEM data by spatially constrained inversion. Geophysics73, F105–F113. doi: 10.1190/1.2895521
    [Google Scholar]
  47. YilmazÖ.1987. Seismic Data Processing.Society of Exploration Geophysicists, 526.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2014024
Loading
/content/journals/10.3997/1873-0604.2014024
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error