1887
Volume 12 Number 6
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

From non‐destructive testing to medical imaging and seismology, estimating the location of scatterers is of high importance. The location estimation can be achieved using a method inspired by seismic interferometry. This method correlates only the isolated scattered fields from a scatterer, and inverts for the travel times to estimate the scatterer’s location. The correlation eliminates the influence of the path between a source and a scatterer. We illustrate the potential of the method using data from a scaled laboratory model, representing geophysical field problems. We use ultrasonic data recorded on an aluminum block containing many scatterers at the surface represented by vertical drill holes. To estimate the horizontal coordinates of a scatterer, we use the scattered Rayleigh‐wave fields recorded along two lines due to one source. We address the problem of selecting scattered fields along the two lines that pertain to the same scatterer using simple geometrical considerations, but also during the inversion. We show that the inversion does not converge when scattered fields coming from different scatterers have been chosen for the correlation.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2014026
2014-04-01
2020-02-23
Loading full text...

Full text loading...

References

  1. CampmanX., van WijkK., RiyantiC.D., ScalesJ. and HermanG.2004. Imaging scattered seismic surface waves. Near Surface Geophysics2(4), 223–230.
    [Google Scholar]
  2. CampmanX. and RiyantiC.D.2007. Non‐linear inversion of scattered seismic surface waves. Geophysical Journal International171, 1118–1125, doi: 10.1111/j.1365‐246X.2007.03557.x.
    [Google Scholar]
  3. ChaiH.Y., PhoonK., GohS.H. and WeiC.F.2012. Some theoretical and numerical observations on scattering of Rayleigh waves in media containing shallow rectangular cavities. Journal Applied Geophysics83, 107–119, doi: 10.1016/j.jappgeo.2012.05.005. ISSN: 0926‐9851.
    [Google Scholar]
  4. CurtisA. and HallidayD.2010. Source‐receiver wave field interferometry. Physical Review E81, 046601.
    [Google Scholar]
  5. CurtisA., NicolsonH., HallidayD., TrampertJ. and BaptieB.2009. Virtual seismometers in the subsurface of the Earth from seismic interferometry. Nature Geoscience2, 700–704.
    [Google Scholar]
  6. GelisC., LeparouxD., VirieuxJ., BitriA., OpertoS. and GrandjeanG.2005. Numerical modeling of surface waves over shallow cavities. Journal of Environmental & Engineering Geophysics10(2), 111–121, doi:10.2113/JEEG10.2.111.
    [Google Scholar]
  7. GrandjeanG. and LeparouxD.2004. The potential of seismic methods for detecting cavities and buried objects: experimentation at a test site. Journal of Applied Geophysics56(2), 93–106, doi: 10.1016/j.jap‐pgeo.2004.04.004.
    [Google Scholar]
  8. HallidayD.F. and CurtisA.2009. Seismic interferometry of scattered surface waves in attenuative media. Geophysical Journal International178, 419–446, doi: 10.1111/j.1365‐246X.2009.04153.x.
    [Google Scholar]
  9. HallidayD.F. and CurtisA.2010. An interferometric theory of source‐receiver scattering and imaging. Geophysics75, SA95‐SA103.
    [Google Scholar]
  10. HarmankayaU., KaslilarA., ThorbeckeJ., WapenaarK. and DraganovD.2013. Locating near‐surface scatterers using non‐physical scattered waves resulting from seismic interferometry. Journal of Applied Geophysics91, 66–81, doi: 10.1016/j.jappgeo.2013.02.004.
    [Google Scholar]
  11. HermanG.C., MilliganP.A., HugginsR.J. and RectorJ.W.2000. Imaging shallow objects and heterogeneities with scattered guided waves. Geophysics65(1), 247–252.
    [Google Scholar]
  12. KaslilarA.2007. Inverse scattering of surface waves: imaging of near‐surface heterogeneities. Geophysical Journal International171, 352–367, doi: 10.1111/j.1365‐246X.2007.03524.x.
    [Google Scholar]
  13. LeparouxD., BitriA. and GrandjeanG.2000. Underground cavity detection: a new method based on seismic Rayleigh Waves. EJEEG5, 33–53.
    [Google Scholar]
  14. MelesA.G. and CurtisA.2013. Physical and non‐physical energy in scattered wave source‐receiver interferometry. Journal of the Acoustical Society of America133(6), 3790–3801, doi: 10.1121/1.4802825.
    [Google Scholar]
  15. MikesellT.D., van WijkK., BlumT.E., SniederR. and SatoH.2012. Analyzing the coda fromcorrelating scattered surface waves. Journal of the Acoustical Society of America131(3), EL275–EL281, doi: 10.1121/1.3687427.
    [Google Scholar]
  16. MohantyP.R.2011. Numerical Modeling of P‐Waves for Shallow Subsurface Cavities Associated with Old Abandoned Coal Workings. Journal of Environmental and Engineering Geophysics16(4), 165–175.
    [Google Scholar]
  17. Rodríguez‐CastellanosA., Sánchez‐SesmaF.J., LuzónF. and MartinR.2006. Multiple Scattering of Elastic Waves by Subsurface Fractures and Cavities. Bulletin of the Seismological Society of America96(4A), 1359–1374.
    [Google Scholar]
  18. SchusterG.T., YuJ., ShengJ. and RickettJ.2004. Interferometric/day‐light imaging, Geophysical Journal International157, 838–852 doi:10.1111/j.1365‐246X.2004.02251.x.
    [Google Scholar]
  19. SniederR. and NoletG.1987. Linearized scattering of surface waves on a spherical Earth. Journal of Geophysics61, 55–63.
    [Google Scholar]
  20. SniederR.2004. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E69, 046610, doi: 10.1103/PhysRevE.69.046610.
    [Google Scholar]
  21. SniederR., van WijkK., HaneyM. and CalvertR.2008. Cancellation of spurious arrivals in Green’s function extraction and the generalized optical theorem. Physical Review E78, 036606, doi: 10.1103/PhysRevE.78.036606.
    [Google Scholar]
  22. SniederR. and FleuryC.2010. Cancellation of spurious arrivals in Green’s function retrieval of multiple scattered waves. Journal of the Acoustical Society of America128(4), 1598–1605. van ManenD., CurtisA. and RobertssonJ.O.A. 2006. Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity. Geophysics 71(4), SI47–SI60.
    [Google Scholar]
  23. van WijkK., ScalesJ.A., NavidiW. and TenorioL.2002. Data and model uncertainty estimation for linear inversion. Geophysical Journal International149, 625–632.
    [Google Scholar]
  24. WapenaarK.2004. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters93(25), 254301, doi: 10.1103/PhysRevLett.93.254301.
    [Google Scholar]
  25. WuR.S. and AkiK.1988. Introduction: Seismic wave scattering in three‐dimensionally heterogeneous earth. PAGEOPH128 (1/2), 1–5.
    [Google Scholar]
  26. XiaJ., NyquistJ.E., XuY.X., RothM.J.S. and MillerR.D.2007. Feasibility of detecting near‐surface feature with Rayleigh‐wave diffraction. Journal of Applied Geophysics62(3), 244–253, doi: 10.1016/j.jappgeo.2006.12.002.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2014026
Loading
/content/journals/10.3997/1873-0604.2014026
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error