1887
Volume 13 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Geophysical data were acquired during a survey of the Hluboká Fault in the Czech Republic, Central Europe. The recorded surface waves are studied in the frequency range 8‐200 Hz. Phase velocity dispersion curves of Rayleigh and Love waves are determined from pairs of three‐component seismograms with a 5 m receiver spacing by means of a frequency‐time analysis along the profile. Rayleigh waves are analysed on the vertical (Z) and radial (R) components and Love waves on the transversal (T) component. Dispersion curves from the vertical component are then inverted to 1‐D S‐wave velocity models using the isometric method. A set of 1‐D S‐wave velocity models representing a pseudo 2‐D S‐wave velocity distribution along the profile is obtained.

This velocity distribution is compared with the results of other geophysical methods and also with direct observation from a shallow paleoseismic trenching. A combination of the S‐wave velocities obtained from the surface wave analysis and P‐wave velocities from refraction tomography is used to estimate the Poisson ratio distribution. It is shown that the resolution capabilities of surface waves are comparable in this case with electric resistivity tomography in near surface medium and with P‐wave tomography in the depths exceeding approx. 15 metres.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2014039
2014-06-01
2020-06-05
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.2002. Quantitative Seismology. 2nd edition, University Science Books, Sausalito, CA.
  2. ApparaoA. and RoyA.1972. Field results for direct‐current resistivity profiling with twoelectrode array. Geoexploration11, 21–44.
    [Google Scholar]
  3. CocciaZ., Del GaudioV., VenistiN. and WasowskiJ.2010. Application of Refraction Microtremor (ReMi) technique for determination of 1‐D shear wave velocity in a landslide area. Journal of Applied Geophysics71, 71–89.
    [Google Scholar]
  4. DemanetD., RenardyF., VannesteK., JongmansD., CamelbeeckT. and MeghraouiM.2001. The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium. Geophysics66(1), 78–89.
    [Google Scholar]
  5. DziewonskiA., BlochS. and LandismanM.1969. A technique for the analysis of transient seismic signals. Bulletin of the Seismological Society of America59(1), 427–444.
    [Google Scholar]
  6. FischerT., ŠtěpančíkováP., KarousováM., TáboříkP., FlechsigC. and GaballahM.Imaging the Marianske Lazne Fault (Czech Republic) by 3‐D ground‐penetrating radar and electric resistivity tomography. Studia Geophysica et Geodaetica56, 1019–1036. doi: 10.1007/s11200‐012‐0825‐z
    [Google Scholar]
  7. ForbrigerT.2003a. Inversion of shallow‐seismic wavefields: I. Wavefield transformation. Geophysical Journal International153, 719–734.
    [Google Scholar]
  8. ForbrigerT.2003b. Inversion of shallow‐seismic wavefields: II. Inferring subsurface properties from wavefield transforms. Geophysical Journal International153, 735–752.
    [Google Scholar]
  9. FotiS.2005. Surface Wave Testing for Geotechnical Characterization. In: Surface Waves in Geomechanics ‐ Direct and Inverse Modelling for Soil and Rocks, CSIM Lecture Notes, (eds C.G.Lai and K.Wilmanski ), pp. 47–71. Springer‐Verlag, Wien‐New York.
    [Google Scholar]
  10. HagedoornJ.G.1959. The Plus‐Minus method of interpreting seismic refraction sections. Geophysical Prospecting7, 158–182.
    [Google Scholar]
  11. HartvichF. and ValentaJ.2011. The identification of faults using morphostructural and geophysical methods: a case study from Strasin cave site. Acta Geodynamica et Geomaterialia164, 425–441.
    [Google Scholar]
  12. HartvichF. and ValentaJ.2013. Tracing an intra‐montane fault: an interdisciplinary approach. Surveys in Geophysics34(3), 317–347. doi: 10.1007/s10712‐012‐9216‐9
    [Google Scholar]
  13. HaskellN.A.1953. The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America43, 17–34.
    [Google Scholar]
  14. Keilis‐BorokV.I. (ed.). 1989. Seismic Surface Waves in a Laterally Inhomogeneous Earth. Series: modern approaches in geophysics, vol. 9. Kluwer Academic Publishers.
    [Google Scholar]
  15. KimK.Y., KimD.H. and LeeS.Y.2004. P‐ and S‐wave refraction studies in the Yangsan fault zone of Korea. SAGEEP17, 1426–1434
    [Google Scholar]
  16. KobayashiR. and NakanishiI.1998. Location of Love‐to‐Rayleigh conversion due to lateral heterogeneity or azimuthal anisotropy in the upper mantle. Geophysical Research Letters25, 1067–1070.
    [Google Scholar]
  17. KolinskýP.2004. Surface wave dispersion curves of Eurasian earthquakes: the SVAL Program. Acta Geodynamica et Geomaterialia134, 165–185.
    [Google Scholar]
  18. KolinskýP. and BrokešováJ.2007. The Western Bohemia uppermost crust shear wave velocities from Love wave dispersion. Journal of Seismology11(1), 101–120. doi 10.1007/s10950‐006‐9040‐0
    [Google Scholar]
  19. KolinskýP., MálekJ. and BrokešováJ.2011. Shear wave crustal velocity model of the western Bohemian Massif from Love wave phase velocity dispersion. Journal of Seismology15(1), 81–104. doi:10.1007/s10950‐010‐9209‐4
    [Google Scholar]
  20. LaiC.G., RixG.J., FotiS. and RomaV.2002. Simultaneous measurement and inversion of surface wave dispersion and attenuation curves. Soil Dynamics and Earthquake Engineering22, 923–930.
    [Google Scholar]
  21. LaiC.G.
    and WilmanskiK. (eds). 2005. Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks. CISM Courses and Lectures No. 481. International Centre for Mechanical Sciences. Springer.
    [Google Scholar]
  22. LeeK.H. and KimH.J.2003. Source‐independent full‐waveform inversion of seismic data. Geophysics68(6), 2010–2015.
    [Google Scholar]
  23. LokeM.H. and BarkerR.D.1996. Rapid least‐squares inversion of apparent resistivity pseudosections using a quasi‐Newton method. Geophysical Prospecting44, 131–152.
    [Google Scholar]
  24. LoveA.E.H.1911. Some Problems of Geodynamics. Cambridge University Press, Cambridge.
    [Google Scholar]
  25. LuoY., XiaJ., LiuJ., XuY. and LiuQ.2008. Generation of a pseudo‐2D shear‐wave velocity section by inversion of a series of 1D dispersion curves. Journal of Applied Geophysics64, 115–124. doi:10.1016/j. jappgeo.2008.01.003
    [Google Scholar]
  26. MálekJ., HorálekJ. and JanskyJ.2005. One‐dimensional qP‐wave Velocity Model of the Upper Crust for the West Bohemia/Vogtland Earthquake Swarm Region. Studia Geophysica et Geodaetica49, 501–524.
    [Google Scholar]
  27. MálekJ., RûzekB. and KolářP.2007. Isometric method: efficient tool for solving nonlinear inverse problems. Studia Geophysica et Geodaetica51, 469–490.
    [Google Scholar]
  28. MillerR.D., XiaJ., ParkC.B. and IvanovJ.1999. Multichannel analysis of surface waves to map bedrock. The Leading Edge18, 1392–1396.
    [Google Scholar]
  29. NazarianS., StokoeK.H. and HudsonW.R.1983. Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement system. Transportation Research Record930, 38–45.
    [Google Scholar]
  30. NguyenF., GaramboisS., JongmansD., PirardE. and LokeM.H.2005. Image processing of 2D resistivity data for imaging faults. Journal of Applied Geophysics57, 260–277
    [Google Scholar]
  31. ParkC.B., MillerR.D. and XiaJ.1999. Multichannel analysis of surface waves. Geophysics64, 800–808.
    [Google Scholar]
  32. ProskuryakovaT.A., NovotnyO. and VoroninaE.V.1981. Studies of the Earth’s structure by the surface‐wave method (Central Europe). Izuchenie stroeniya Zemli metodom poverkhnostnykh voln (Tsentral’naya Evropa), Nauka, Moscow. (in Russian)
    [Google Scholar]
  33. RayleighJ.W.S.1885. On waves propagating along the plane surface of an elastic solid. Proceedings London Mathematical Society17, 4–11.
    [Google Scholar]
  34. RixG.J., LaiC.G. and FotiS.2001. Simultaneous measurement of surface wave dispersion and attenuation curves. Geotechnical Testing Journal ASTM24, 350–358.
    [Google Scholar]
  35. RixG.J.2005. Near‐Surface Site Characterization Using Surface Waves. In: Surface Waves in Geomechanics ‐ Direct and Inverse Modelling for Soil and Rocks, CSIM Lecture Notes, (eds C.G.Lai and K.Wilmanski ), pp. 1–46. Springer‐Verlag, Wien‐New York.
    [Google Scholar]
  36. SafaniJ., O’NeillA., MatsuokaT. and SanadaY.2005. Applications of Love Wave Dispersion for Improved Shear‐wave Velocity Imaging. Journal of Environmental & Engineering Geophysics10(2), 135–150. doi: 10.2113/JEEG10.2.135
    [Google Scholar]
  37. SoccoL.V., FotiS. and BoieroD.2010. Surface‐wave analysis for building nearsurface velocity models ‐ Established approaches and new perspectives. Geophysics75(5), 75A83‐75A102. doi: 10.1190/1.3479491
    [Google Scholar]
  38. SoccoL.V. and StrobbiaC.2004. Surface‐wave method for near‐surface characterization: a tutorial. Near Surface Geophysics2(4), 165–185. doi: 10.3997/1873–0604.2004015
    [Google Scholar]
  39. ŠpačekP., PracharI., ValentaJ., ŠtěpančíkováP., SvancaraJ., PiskacJ.et al. 2011. Quaternary activity of the Hluboká Fault. Final report on research project. Masaryk University Brno. 199pp + appendices. http://www.ipe.muni.cz/hluboka_fault
    [Google Scholar]
  40. ŠtěpančíkováP., DohnalJ., PánekT., LojM., SmolkováV. and SilhánK.2011. The application of electrical resistivity tomography and gravimetric survey as useful tools in an active tectonics study of the Sudetic Marginal Fault (Bohemian Massif, central Europe). Journal of Applied Geophysics74, 69–80. doi: 10.1016/j.jappgeo.2011.03.007
    [Google Scholar]
  41. StokoeK.H.II, WrightS.G., BayJ.A. and RoessetJ.M.1994. Characterization of geotechnical sites by SASW method. In: Geophysical Characterization of Sites, (ed. R.D.Woods ), 15–25. Oxford & IBH Publishing Company.
    [Google Scholar]
  42. StrobbiaC. and FotiF.2006. Multi‐offset phase analysis of surface wave data (MOPA). Journal of Applied Geophysics59, 300–313. doi:10.1016/j.jappgeo.2005.10.009
    [Google Scholar]
  43. TarantolaA.1987. Inverse Problem Theory. Elsevier Science B.V., Amsterdam.
  44. ThomsonW.T.1950. Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics21, 89–93.
    [Google Scholar]
  45. TruptiS., SrinivasK.N.S.S.S., PavanK.P. and SeshunarayanaT.2012. Site characterization studies along coastal Andhra Pradesh ‐ India using multichannel analysis of surface waves. Journal of Applied Geophysics79, 82–89.
    [Google Scholar]
  46. UdiasA.1999. Principles of Seismology. 1st edition.Cambridge University Press.
  47. WiseD.J., CassidyJ. and LockeC.A.2003. Geophysical imaging of the Quaternary Wairoa North Fault, New Zealand: a case study. Journal of Applied Geophysics53, 1–16.
    [Google Scholar]
  48. XiaJ., MillerR.D. and ParkC.B.1999. Estimation of near‐surface shear wave velocity by inversion of Rayleigh wave. Geophysics64(3), 691–700.
    [Google Scholar]
  49. XiaJ., MillerR.D., ParkC.B., HunterJ.A., HarrisJ.B. and IvanovJ.2002. Comparing shear‐wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dynamics and Earthquake Engineering22, 181–190.
    [Google Scholar]
  50. XiaJ., MillerR.D., ParkC.B. and IvanovJ.2000. Construction of 2‐D vertical shearwave velocity field by the multichannel analysis of surface wave technique. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems Arlington, Va., February 20–24, 2000, 1197–1206.
    [Google Scholar]
  51. XiaJ., MillerR.D., ParkC.B., IvanovJ., TianG. and ChenC.2004. Utilization of highfrequency Rayleigh waves in near‐surface geophysics. The Leading Edge23, 753–759.
    [Google Scholar]
  52. XianhaiS. and HanmingG.2007. Utilization of multimode surface wave dispersion for characterizing roadbed structure. Journal of Applied Geophysics63, 59–67.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2014039
Loading
/content/journals/10.3997/1873-0604.2014039
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error