1887
Volume 14 Number 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Hydrocarbons commonly contaminate aquifers and, in certain cases, can be successfully treated through biodegradation. Biodegradation is an effective technique for cleaning up pollution by enhancing pollutant‐degrading bacteria . However, sampling for monitoring processes occurring into the ground during the treatment is expensive and invasive. In this article, an alternative method was tested. Spectral Induced Polarization (SIP) was combined with gas analyses, CO concentration and its carbon isotopic ratio, to monitor toluene aerobic biodegradation in laboratory columns. Microbial activity was characterized by an evolution of the SIP response in correlation with a CO production with the same carbon isotope signature as toluene. The spectral induced polarization response followed the variations of bacterial activity and displayed a phase shift up to 15 mrad. These results support the feasibility of using geophysical measurements, supported by CO analyses, to monitor hydrocarbon biodegradation, and they are proving to be highly promising for real field scale monitoring.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016007
2015-12-01
2020-06-02
Loading full text...

Full text loading...

References

  1. Abdel AalG.Z., AtekwanaE.A., SlaterL.D. and AtekwanaE.A.2004. Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophysical Research Letters31(12), L12505, doi: 10.1029/2004gl020030.
    [Google Scholar]
  2. Abdel AalG., SlaterL. and AtekwanaE.A.2006. Induced‐polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics71(2), H13–H24, doi: 10.1190/1.2187760.
    [Google Scholar]
  3. Abdel AalG.Z., AtekwanaE.A. and AtekwanaE.A.2010. Effect of bioclogging in porous media on complex conductivity signatures. Journal of Geophysical Research: Biogeosciences115(G3), G00–G07, doi: 10.1029/2009jg001159.
    [Google Scholar]
  4. Abdel AalG.Z. and AtekwanaE.A.2014. Spectral induced polarization (SIP) response of biodegraded oil in porous media. Geophysical Journal International,196(2), 804–817, doi: 10.1093/gji/ggt416.
    [Google Scholar]
  5. AggarwalP.K. and HincheeR.E.1991. Monitoring in situ biodegradation of hydrocarbons by using stable carbon isotopes. Environmental Science & Technology25(6), 1178–1180, doi: 10.1021/es00018a026.
    [Google Scholar]
  6. AlbrechtR., GourryJ.C., SimonnotM.O. and LeyvalC.2011. Complex conductivity response to microbial growth and biofilm formation on phenanthrene spiked medium. Journal of Applied Geophysics75(3), 558–564, doi: 10.1016/j.jappgeo.2011.09.001.
    [Google Scholar]
  7. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions AIME146(1), 54–62.
    [Google Scholar]
  8. AtekwanaE.A. and AtekwanaE.A.2010. Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surveys in Geophysics31(2), 247–283, doi: 10.1007/s10712‐009‐9089‐8.
    [Google Scholar]
  9. AtekwanaE.A. and SlaterL.D.2009. Biogeophysics: a new frontier in Earth science research. Reviews of Geophysics47(4), RG4004, doi: 10.1029/2009RG000285.
    [Google Scholar]
  10. AuffretM., LabbéD., ThouandG., GreerC.W. and Fayolle‐GuichardF.2009. Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Applied and Environmental Microbiology75(24), 7774–7782, doi: 10.1128/AEM.01117‐09.
    [Google Scholar]
  11. BleilD.1953. Induced polarization: a method of geophysical prospecting. Geophysics18(3), 636–661.
    [Google Scholar]
  12. BouttonT.W.1991. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. Carbon Isotope Techniques1, 173.
    [Google Scholar]
  13. CassianiG., KemnaA., VillaA. and ZimmermannE.2009. Spectral induced polarization for the characterization of free‐phase hydrocarbon contamination of sediments with low clay content. Near Surface Geophysics7(5–6), 547–562, doi: 10.3997/1873‐0604.2009028.
    [Google Scholar]
  14. DasN. and ChandranP.2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology Research International941810, doi: 10.4061/2011/941810.
    [Google Scholar]
  15. DavisC.A., AtekwanaE.A., AtekwanaE.A., SlaterL.D., RossbachS. and MormileM.R.2006. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophysical Research Letters33(18), L18403, doi: 10.1029/2006GL027312.
    [Google Scholar]
  16. DavisG.B., LaslettD., PattersonB.M. and JohnstonC.D.2013. Integrating spatial and temporal oxygen data to improve the quantification of in situ petroleum biodegradation rates. Journal of Environmental Management117(15), 42–49, doi: 10.1016/j.jenvman.2012.12.027.
    [Google Scholar]
  17. ElsnerM.2010. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. Journal of Environmental Monitoring 12, 2005–2031, doi: 10.1039/c0em00277a.
    [Google Scholar]
  18. European Commission
    European Commission . 2014. Commission Directive 2014/80/EU, amending Annex II to Directive 2006/118/EC of the European Parliament and of the Council on the protection of groundwater against pollution and deterioration. Official Journal of the European Union, L182/52.
    [Google Scholar]
  19. Flores OrozcoA., KemnaA., OberdörsterC., ZschornackL., LevenC., DietrichP.et al.2012. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. Journal of Contaminant Hydrology136–137(0), 131–144, doi: 10.1016/j.jconhyd.2012.06.001.
    [Google Scholar]
  20. GogoS., GuimbaudC., Laggoun‐DéfargeF., CatoireV. and RobertC.2011. In situ quantification of CH4 bubbling events from a peat soil using a new infrared laser spectrometer. Journal of Soils and Sediments11(4), 545–551, doi: 10.1007/s11368‐011‐0338‐3.
    [Google Scholar]
  21. GuimbaudC., CatoireV., GogoS., RobertC., ChartierM., Laggoun‐DéfargeF.et al.2011. A portable infrared laser spectrometer for flux measurements of trace gases at the geosphere‐atmosphere interface. Measurement Science and Technology22(7), 075601, doi: 10.1088/0957‐0233/22/7/075601.
    [Google Scholar]
  22. GuimbaudC., NoelC., ChartierM., CatoireV., BlessingM., GourryJ.C., RobertC.2016. A quantum cascade laser infrared spectrometer for C02 stable isotope analysis: field implementation at a hydrocarbon contaminated site under bio‐remediation. Journal of Environmental Sciences, special issue “Changing complexity of air pollution”, 40, 60–74, doi:10.1016/j.jes.2015.11.015
    [Google Scholar]
  23. HeenanJ., PorterA., NtarlagiannisD., YoungL.Y., WerkemaD.D. and SlaterL.D.2013. Sensitivity of the spectral induced polarization method to microbial enhanced oil recovery processes. Geophysics78(5), E261–E269, doi: 10.1190/geo2013‐0085.1.
    [Google Scholar]
  24. HunkelerD., AndersenN., AravenaR., BernasconiS.M. and ButlerB.J.2001. Hydrogen and carbon isotope fractionation during aerobic bio‐degradation of benzene. Environmental Science & Technology35(17), 3462–3467, doi: 10.1021/es0105111.
    [Google Scholar]
  25. HymanM. and DupontR.R.2001. Groundwater and Soil Remediation, Process Design and Cost Estimating of Proven Technologies. Reston, VA: ASCE Press, 534 pp.
    [Google Scholar]
  26. KaufmannK., ChristophersenV., ButtlerA., HarmsH. and HöhenerP.2004. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Værl0se, Denmark. FEMS Microbiology Ecology48(3), 387–399, doi: 10.1016/j.femsec.2004.02.011.
    [Google Scholar]
  27. KemnaA., BinleyA., CassianiG., NiederleithingerE., RevilA., SlaterD.L.et al.2012. An overview of the spectral induced polarization method for near‐surface applications. Near Surface Geophysics10, 453–468, doi: 10.3997/1873‐0604.2012027.
    [Google Scholar]
  28. LessarJ.F., CobianK.E., McIntyreP.B. and MayerD.W.2006. Medical electrical lead conductor formed from modified MP35N alloy. Patent US7138582 B2.
    [Google Scholar]
  29. MaineultA., BernabéY. and AckererP.2004. Electrical response of flow, diffusion, and advection in a laboratory sand box. Vadose Zone Journal3(4), 1180–1192, doi: 10.2136/vzj2004.1180.
    [Google Scholar]
  30. MajoneM., VerdiniR., AulentaF., RossettiS., TandoiV., KalogerakisN.et al.2014. In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites. New Biotechnology (available online), doi: 10.1016/j.nbt.2014.02.011.
    [Google Scholar]
  31. MeckenstockR.U., MoraschB., GrieblerC. and RichnowH.H.2004. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. Journal of Contaminant Hydrol75(3‐4), 215–255, doi: 10.1016/j.jconhyd.2004.06.003.
    [Google Scholar]
  32. MewafyF.M., WerkemaD.D., AtekwanaE.A., SlaterL.D., Abdel AalG., RevilA.et al.2013. Evidence that bio‐metallic mineral precipitation enhances the complex conductivity response at a hydrocarbon contaminated site. Journal of Applied Geophysics98(0), 113–123, doi: 10.1016/j.jappgeo.2013.08.011.
    [Google Scholar]
  33. MoraschB., HunkelerD., ZopfiJ., TemimeB. and HöhenerP.2011. Intrinsic biodegradation potential of aromatic hydrocarbons in an alluvial aquifer ‐ Potentials and limits of signature metabolite analysis and two stable isotope‐based techniques. Water Research45(15), 4459–469, doi: 10.1016/j.watres.2011.05.040.
    [Google Scholar]
  34. NadimF., HoagG.H., LiuS., CarleyR.J. and ZackP.2000. Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview. Journal of Petroleum Science and Engineering26(1‐4), 169–178, doi: 10.1016/S0920‐4105(00)00031‐0.
    [Google Scholar]
  35. NaudetV. and RevilA.2005. A sandbox experiment to investigate bacteria‐mediated redox processes on self‐potential signals. Geophysical Research Letters32(11), L11405, doi: 10.1029/2005GL022735.
    [Google Scholar]
  36. NoelC., GourryJ. C., DeparisJ., BlessingM., IgnatiadisI., and GuimbaudC.2016. Combining Geoelectrical Measurements and C02 Analyses to Monitor the Enhanced Bioremediation of Hydrocarbon‐Contaminated Soils: A Field Implementation. Applied and Environmental Soil Science, ID 1480976, doi:10.1155/2016/1480976
    [Google Scholar]
  37. NtarlagiannisD., YeeN. and SlaterL.2005. 0n the low‐frequency electrical polarization of bacterial cells in sands. Geophysical Research Letters32(24), L24402, doi:10.1029/2005GL024751.
    [Google Scholar]
  38. NtarlagiannisD. and FergusonA.2009. SIP response of artificial bio‐films. Geophysics74(1), A1–A5, doi: 10.1190/1.3031514.
    [Google Scholar]
  39. OlhoeftG.R.1986. Direct detection of hydrocarbon and organic chemicals with ground penetrating radar and complex resistivity. Proceedings NWWA/API Conference Petroleum Hydrocarbons and Organic Chemicals in Ground Water‐Prevention, Detection and Restoration.
    [Google Scholar]
  40. OshetskiK.C.1999. Complex resistivity to evaluate the biooxidation of gold ore. MSc thesis, Colorado School of Mines, USA, 148 pp.
    [Google Scholar]
  41. ParkhurstD.L. and AppelloC.A.J.1999. User ‘s Guide to PHREEQC (version 2) ‐ A Computer Program for Speciation, Batch‐Reaction, One Dimensional Transport and Inverse Geochemical Calculation, USGS Water‐Resources Investigations Report 99‐4259 312.
    [Google Scholar]
  42. PatakiD.E., EhleringerJ.R., FlanaganL.B., YakirD., BowlingD.R., StillC. J.et al.2003. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles17(1), 1022, doi: 10.1029/2001gb001850.
    [Google Scholar]
  43. PersonnaY.R., NtarlagiannisD., SlaterL., YeeN., O’BrienM. and HubbardS.2008. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations. Journal of Geophysical Research: Biogeosciences113(G2), G02020, doi: 10.1029/2007JG000614.
    [Google Scholar]
  44. PersonnaY.R., SlaterL., NtarlagiannisD., WerkemaD. and SzaboZ.2013. Complex resistivity signatures of ethanol biodegradation in porous media. Journal of Contaminant Hydrology153(0), 37–50, doi: 10.1016/j.jconhyd.2013.07.005.
    [Google Scholar]
  45. RevilA., SchmutzM. and BatzleM.2011. Influence of oil wettability upon spectral induced polarization of oil‐bearing sands. Geophysics76 (5), A31–A36, doi: 10.1190/geo2011‐0006.1.
    [Google Scholar]
  46. RevilA., AtekwanaE.A., ZhangC., JardaniA. and SmithS.2012. A new model for the spectral induced polarization signature of bacterial growth in porous media. Water Resources Research48(9), doi: 10.1029/2012WR011965.
    [Google Scholar]
  47. ReynoldsJ.M.2011. An Introduction to Applied and Environmental Geophysics. John Wiley & Sons.
    [Google Scholar]
  48. RimstidtJ.D.1997. Quartz solubility at low temperatures. Geochimica et Cosmochimica Acta61, 2553–2558, doi: 10.1016/S0016‐7037(97).
    [Google Scholar]
  49. SauckW.A.2000. A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. Journal of Applied Geophysics44 (2–3), 151–165, doi: 10.1016/S0926‐9851(99)00021‐X.
    [Google Scholar]
  50. SchmutzM., RevilA., VaudeletP., BatzleM., VinaoP.F. and WerkemaD. D.2010. Influence of oil saturation upon spectral induced polarization of oil‐bearing sands. Geophysical Journal International183(1), 211–224, doi: 10.1111/j.1365‐246X.2010.04751.x.
    [Google Scholar]
  51. SchmutzM., BlondelA. and RevilA.2012. Saturation dependence of the quadrature conductivity of oil‐bearing sands. Geophysical Research Letters39(3), L03402, doi: 10.1029/2011gl050474.
    [Google Scholar]
  52. SchwartzN., ShalemT. and FurmanA.2014. The effect of organic acid on the spectral‐induced polarization response of soil. Geophysical Journal International (available online), doi: 10.1093/ gji/ggt529.
    [Google Scholar]
  53. SchweitzerP.A.2004. Corrosion Resistance Tables: Metals, Nonmetals, Coatings, Mortars, Plastics, Elastomers, and Linings and Fabrics, 5th edn. CRC Press (Series: Corrosion Technology), 912 pp.
    [Google Scholar]
  54. SihotaN.J., SingurindyO. and MayerK.U.2011. CO2‐efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer. Environmental Science & Technology45(2), 482–88, doi: 10.1021/es1032585.
    [Google Scholar]
  55. SihotaN.J. and MayerK.U.2012. Characterizing vadose zone hydrocar‐bon biodegradation using carbon dioxide effluxes, isotopes, and reactive transport modeling. Vadose Zone Journal11(4), doi: 10.2136/ vzj2011.0204.
    [Google Scholar]
  56. SlaterL. and LesmesD.2002. IP interpretation in environmental investigations. Geophysics67(1), 77–88, doi:10.1190/1.1451‐353.
    [Google Scholar]
  57. SogadeJ., Scira‐ScappuzzoF., VichabianY., ShiW., RodiW., LesmesD.et al.2006. Induced‐polarization detection and mapping of contaminant plumes. Geophysics71(3), B75–B84, doi:10.1190/1.2196873.
    [Google Scholar]
  58. TowleJ., AndersonR., PeltonW., OlhoeftG. and LaBrecqueD.1985. Direct detection of hydrocarbon contaminants using the induced polarization method. SEG Technical Program Expanded Abstracts, 145–147.
    [Google Scholar]
  59. UstraA., SlaterL., NtarlagiannisD. and ElisV.2012. Spectral induced polarization (SIP) signatures of clayey soils containing toluene. Near Surface Geophysics10(6), 503–515, doi: 10.3997/1873‐0604.2012015.
    [Google Scholar]
  60. VanhalaH.1997. Mapping oil‐contaminated sand and till with the spectral induced polarization (SIP) method. Geophysical Prospecting45 (2), 303–326.
    [Google Scholar]
  61. WeissJ.V. and CozzarelliI.2008. Biodegradation in contaminated aquifers: incorporating microbial/molecular methods. Groundwater46, 305–322, doi: 10.1111/j.1745‐6584.2007.00409.x.
    [Google Scholar]
  62. WilliamsK.H., KemnaA., WilkinsM.J., DruhanJ., ArntzenE., N’GuessanA.L.et al.2009. Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environmental Science & Technology43(17), 6717–6723, doi: 10.1021/es900855j.
    [Google Scholar]
  63. YangL.2008. Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta74(5), 1621–1629, doi: 10.1016/j.talanta.2007.10.018.
    [Google Scholar]
  64. ZhangC., SlaterL. and ProdanC.2013. Complex dielectric properties of sulfate‐reducing bacteria suspensions. Geomicrobiology Journal30(6), 490–496, doi: 10.1080/01490451.2012.71999
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016007
Loading
/content/journals/10.3997/1873-0604.2016007
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error