1887
Volume 15 Number 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

In this study, the use of ground‐penetrating radar for characterising ornamental sedimentary rocks was tested. Specifically, the ability of this non‐invasive geophysical prospecting method to identify fabrics and textures in rocks was investigated. Blocks mined from quarries were analysed, and ornamental rocks with the same lithologies as other widely utilised ornamental rocks with a variety of sedimentary fabrics and textures were selected. Rocks with clastic brechoid, cross‐laminated sparitic, massive or layered micritic, and laminar bindstone textures were analysed. Antennas that provided the maximum detail and a sufficient depth of penetration were used. The low electrical conductivity of carbonates permitted the use of high‐frequency antennas (800 MHz and 1.6 GHz), which were useful in studying the entire thickness of a boulder (up to 2 m).

The cross‐laminations in the oolitic limestones, the laminar bindstones of travertines, the differentiation between massive and brecciated fabrics, and the massive and slaty fabrics of the mic‐ritic limestones were examined using these two frequencies. In micritic textures without discontinuities (neither sedimentary nor diagenetic), the radargrams could detect facies with few reflections (). In addition to analysing fabrics and textures, the ground‐penetrating radar measurements could identify anisotropy in these rocks, which makes ground‐penetrating radar an effective tool for evaluating the mechanical state of a boulder prior to its cutting.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017015
2017-03-01
2020-08-07
Loading full text...

Full text loading...

References

  1. ArosioD., MundaS. and ZanziL.2012. Quality control of stone blocks during quarrying activities. Presented at the 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China.
    [Google Scholar]
  2. ArosioD., ZanziL., LongoniL. and PapiniM.2015. Fracture thickness from GPR measurements. 8th international workshop on advanced ground penetrating radar, 1–4.
    [Google Scholar]
  3. AurellM.1990. El Jurásico superior de la Cordillera Ibérica Central (Provincias de Zaragoza y Teruel). Análisis de Cuenca. PhD Thesis, Universidad de Zaragoza, Spain, 389 p.
    [Google Scholar]
  4. BaenaJ. and VoersmansF.1983. Mapa geológico y memoria explicativa de la hoja 1045 (Almería), del mapa geológico de España, a escala 1:50.000. Instituto Tecnológico y Geológico de España, Madrid.
    [Google Scholar]
  5. BakkerM.A.J. and Van der MeerJ.J.M.2003. Structure of a Pleistocene push moraine revealed by GPR: the eastern Veluwe Ridge, The Netherlands. In: Ground Penetrating Radar in Sediments (eds. C.S.Bristow and H.M.Jol ). Geological Society London Special Publication211, 143–151.
    [Google Scholar]
  6. BersezioR., GiudiciM. and MeleM.2007. Combining sedimentological and geophysical data for high‐resolution 3D mapping of fluvial architectural elements in the Quaternary Po plain (Italy).Sedimentary Geology202, 230–248.
    [Google Scholar]
  7. BridgeJ.S., AlexanderJ., CollierR.E.L.L., GawthorpeR.L. and JarvisJ.1995. Ground‐penetrating radar and coring used to document the large‐scale structure of point‐bar deposits in 3‐D.Sedimentology42, 839–852.
    [Google Scholar]
  8. CañaverasJ.C., García del CuraM.A., Sánchez‐MoralS., Muñoz‐CerveraM.C. and OrdóñezS.2002. Procesos de karstificación polif‐ásica en las canteras de Crema Marfil (Pinoso, Alicante). Aplicación a la explotación de rocas ornamentales. Geogaceta31, 31–34.
    [Google Scholar]
  9. ComasX., TerryN., SlaterL., WarrenM., KolkaR., KristiyonoA., SudianaN., NurjamanD. and Darusman, T.2015. Imaging tropical peatlands in Indonesia using ground‐penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization.Biogeosciences12, 2995–3007.
    [Google Scholar]
  10. De DomenicoD., CampoD. and TeramoA.2013. FDTD modelling in high‐resolution 2D and 3D GPR surveys on a reinforced concrete column in a double wall of hollow bricks.Near Surface Geophysics11, 29–40.
    [Google Scholar]
  11. Gallego CoidurasI.C., García de DomingoA. and López OlmedoF.1981. Mapa Geológico y memoria explicativa de la hoja 870 (Pinoso) del mapa geológico de España, a escala 1:50.000. Instituto Tecnólogico y Geológico de España, Madrid.
    [Google Scholar]
  12. García del CuraM.A., Rodríguez GarcíaM.A., PinaJ. A., CañaverasJ.C., BaltuilleJ. M. and Ordóñez S. 1999. Los mármoles comerciales‐Marrón Imperial y Marrón Emperador (SE de España). Caracterización petrológica y criterios de exploratión.Boletín Geológico y Minero de España110, 67–76.
    [Google Scholar]
  13. GirardiJ.D. and DavisD.M.2010. Parabolic dune reactivation and migration at Napeague, NY, USA: insights from aerial and GPR imagery.Geomorphology114, 530–541.
    [Google Scholar]
  14. GómezJ.J. and GoyA.1979. Las Unidades Litoestratigráficas del Jurásico medio y superior, en facies carbonatadas del sector levantino de la Cordillera Ibérica.Estudios Geológicos35, 596–598.
    [Google Scholar]
  15. Gómez‐OrtizD., Martín‐CrespoT., Rodrígue, I., SánchezM.J. and MontoyaI.2009. The internal structure of modern barchan dunes of the Ebro River Delta (Spain) from ground penetrating radar.Journal of Applied Geophysics68, 159–170.
    [Google Scholar]
  16. GoyA., GómezJ.J. and YébenesA.1976. El Jurásico de la Cordillera Ibérica (Mitad Norte): Unidades Litoestratigráficas.Estudios Geológicos32, 391–423.
    [Google Scholar]
  17. GrandjeanG. and GourryJ.C.1996. GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece).Journal of Applied Geophysics36, 19–30.
    [Google Scholar]
  18. JackobsenP.R. and OvergaardT.2002. Georadar facies and glaciotec‐tonic structures in ice marginal deposits, northwest Zealand, Denmark.Quaternary Science Review21, 917–927.
    [Google Scholar]
  19. Jerez MirL., Jerez MirF. and García MonzónG.1982. Mapa Geológico y memoria explicativa de la hoja 891 (Cieza) del mapa geológico de España, a escala 1:50.000. Instituto Tecnológico y Geológico de España, Madrid.
    [Google Scholar]
  20. JolH.M.2008. Ground Penetrating Radar Theory and Applications,1st edn. USA: Elsevier Science.
    [Google Scholar]
  21. KadiogluS.2008. Photographing layer thicknesses and discontinuities in a marble quarry with 3D GPR visualization.Journal of Applied Geophysics64, 109–114.
    [Google Scholar]
  22. LuodesH.2008. Natural stone assessment with ground penetrating radar.Estonian Journal of Earth Sciences57(3), 149–155.
    [Google Scholar]
  23. MeléndezA.1991. Mapa Geológico y memoria explicativa de la hoja 585 (Almonacid de Zorita) del mapa geológico de España, a escala 1:50.000. Instituto Tecnológico y Geológico de España, Madrid.
    [Google Scholar]
  24. MolinaJ.M.1987. Análisis de facies del Mesozoico en el Subbético externo (Provincia de Córdoba y sur de Jaén). PhD Thesis, Universidad de Granada, Spain, 518 pp.
    [Google Scholar]
  25. NealA.2004. Ground‐penetrating radar and its use in sedimentology: principles, problems and progress.Earth‐Science Reviews66, 261–330.
    [Google Scholar]
  26. OnurA. and BakracS.2009. Determination of discontinuities in marble blocks via a nondestructive ultrasonic technique.International Journal of Minerals, Metallurgy, and Materials16, 487–493.
    [Google Scholar]
  27. OrtizP., MayoralE., GuerreroM.A. and Galán E. 1995. Caracterizacion petrografica y geoquímica de las calizas de la Sierra de Estepa (Sevilla) y valoracion de la calidad técnica como materiales de con‐strucción.Estudios Geológicos51, 213–222.
    [Google Scholar]
  28. Pérez‐GraciaV., Di CapuaD. and González‐DrigoR.2010. GPR resolution in cultural heritage applications. 13th international conference on ground penetrating radar (GPR), Lecce, June 2010.
    [Google Scholar]
  29. PorsaniJ.L., SauckW.A. and JuniorA.O.S.2006. GPR for mapping fractures and as a guide for the extraction of ornamental granite from a quarry: a case study from southern Brazil.Journal of Applied Geophysics58, 177–187.
    [Google Scholar]
  30. Pueyo‐AnchuelaO., LuzónA., Gil GarbiH., Pére,A., PocovíA. and SorianoM.A.2014. Combination of electromagnetic, geophysical methods and sedimentological studies for the development of 3D models in alluvial sediments affected by karst (Ebro Basin, NE Spain).Journal of Applied Geophysics102, 85–91.
    [Google Scholar]
  31. ReyJ.1993. Análisis de la cuenca subbética durante el Jurásico y Cretácico en la transversal Caravaca de la Cruz‐Vélez Rubio. PhD thesis, Universidad de Granada, Spain, 460 pp.
    [Google Scholar]
  32. ReyJ., MartínezJ., VeraP., RuizN., CañadasF. and MontielV.2015. Ground‐penetrating radar method used for the characterization of ornamental stone quarries.Construction and Building Materials77, 439–447.
    [Google Scholar]
  33. Robador MorenoA.2006. Mapa geológico y memoria explicativa de la hoja 382 (Epila), del mapa geológico de España, a escala 1:50.000. Instituto Tecnológico y Geolósgico de España, Madrid.
    [Google Scholar]
  34. Rodríguez SantallaI., Sánchez GarcíaM. J., Montoya MontesI., Gómez OrtizD., Martín CrespoT. and Serra RaventosJ.2009. Internal structure of the aeolian sand dunes of El Fangar spit, Ebro Delta (Tarragona, Spain).Geomorphology104, 238–252.
    [Google Scholar]
  35. SigurdssonT. and OvergaardT.1998. Application of GPR for 3D visualization of geological and structural variation in a limestone formation.Journal of Applied Geophysics40, 29–36.
    [Google Scholar]
  36. SandmeierK.J.2012. REFLEXWVersion 7.0, Program for the Processing of Seismic, Acoustic or Electromagnetic Reflection, Refraction and Transmission Data. Software Manual. Germany: Karlsruhre.
    [Google Scholar]
  37. SteelmanC.M., KennedyC.S. and ParkerB.L.2015. Geophysical conceptualization of a fractured sedimentary bedrock riverbed using ground‐penetrating radar and induced electrical conductivity.Journal of Hydrology521, 433–446.
    [Google Scholar]
  38. UrosevicM., Sebastian‐PardoE., Ruiz‐AgudoE. and CardellC.2011. Evaluación de las propiedades físicas de dos rocas carbonáticas usadas como material de construcción actual e histórico en Andalucía Oriental, España.Materiales de Construccion61, 93–114.
    [Google Scholar]
  39. VeraJ.A.1998. El Jurásico de la Cordillera Bética: estado actual de conocimientos.Cuadernos de Geología Ibérica24, 11–36.
    [Google Scholar]
  40. VeraJ.A., Ruiz‐OrtizP.A., García‐HernándezM. and MolinaJ.M.1988. Paleokarst and related sediments in the Jurassic of the Subbetic Zone, southern Spain. In: Paleokarst (eds. N.P.James and P.W.Choquette ), p. 364–384. New York: Springer‐Verlag.
    [Google Scholar]
  41. VilasL., MasR., GarcíaR., AriasC., AlonsoA., MenendezN.and RincónR.1982. Ibérica Suroccidental. In: El Cretdcico de España.Madrid, Spain: Univ. Complutense Madrid, 457–514.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017015
Loading
/content/journals/10.3997/1873-0604.2017015
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error