1887
Volume 15 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Current methods for characterizing near‐surface marine sediments rely on extensive coring/pene‐trometer testing and correlation to seismic facies. Little quantitative information is regularly derived from geophysical data beyond qualitative inferences of sediment characteristics based on seismic facies architecture. Even these fundamental seismostratigraphic interpretations can be difficult to correlate with lithostratigraphic data due to inaccuracies in the time‐to‐depth conversion of geophysical data and potential loss and/or compression of high‐porosity and under‐consolidated sea‐floor material during direct sampling. To complicate matters further, when quantitative information is derived from marine geophysical data, it often describes the sediments using terminology (e.g., acoustic impedance and seismic quality factor) that is impenetrable to geologists and engineers. In contrast, for hydrocarbon prospecting, reservoir characterization using quantitative inversion of geophysical data has developed enormously over the past 20 years or more. Impedance and amplitude‐versus‐angle inversion techniques are now commonplace, whereas computationally expensive waveform inversions are gaining traction, and there is a well‐developed interface between these geophysical and reservoir engineering fields via rock physics.

In this paper, we collate and review the different published inversion methods for high‐resolution geophysical data. Using several case study examples spanning a broad range of depositional environments, we assess the current state of the art in remote characterization of shallow sediments from a multidisciplinary viewpoint, encompassing geophysical, geological, and geotechnical angles. By identifying the key parameters used to characterize the subsurface, a framework is developed whereby geological, geotechnical, and geophysical characterizations of the subsurface can be related in a less subjective manner. As part of this, we examine the sensitivity of commonly derived acoustic properties (e.g., acoustic impedance and seismic quality factor) to more fundamentally important soil properties (e.g., lithology, pore pressure, gas saturation, and undrained shear strength), thereby facilitating better integration between geological, geotechnical, and geophysical data for improved mapping of sediment properties. Ultimately, we present a number of ideas for future research activities in this field.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017024
2018-12-18
2024-04-23
Loading full text...

Full text loading...

References

  1. AleardiM., TognarelliA. and MazzottiA.2016. Characterisation of shallow marine sediments using high‐resolution velocity analysis and genetic algorithm‐driven 1D elastic full‐waveform inversion.Near Surface Geophysics14(5), 449–460.
    [Google Scholar]
  2. AlloucheN., DrijkoningenG.G. and van der NeutJ.2010. Methodology for dense spatial sampling of multicomponent recording of converted waves in shallow marine environments.Geophysics75(6), WB29–WB37.
    [Google Scholar]
  3. AlloucheN., DrijkoningenG.G., VersteegR. and GhoseR.2011. Converted waves in a shallow marine environment: experimental and modeling studies, Geophysics, 76(1), P.T1–T11.
    [Google Scholar]
  4. AyresA. and TheilenF.1999. Relationship between P‐ and S‐wave velocities and geological properties of near‐surface sediments of the continental slope of the Barents Sea.Geophysical Prospecting47, 431–441.
    [Google Scholar]
  5. BallardM., BeckerK.M. and GoffJ.A.2010. Geoacoustic inversion for the New Jersey shelf: 3D sediment model.IEEE Journal of Oceanic Engineering35(1), 28–42.
    [Google Scholar]
  6. BellM. and WalkerM.J.2005. Late Quaternary Environmental Change: Physical and Human Perspectives. Pearson Education.
    [Google Scholar]
  7. BlackfordJ., StahlH., BullJ.M., BergesB.J.P., CevatogluM., LichtschlagA. et al. 2014. Detection and impacts of leakage from sub‐seafloor deep geological carbon dioxide storage.Nature Climate Change4, 1011–1016.
    [Google Scholar]
  8. BohlenT., KuglerS., KleinG. and TheilenF.2004. 1.5D inversion of lateral variation of Scholte‐wave dispersion.Geophysics69(2), 330–344.
    [Google Scholar]
  9. BoschM., MukerjiT. and GonzalezE.2010. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review.Geophysics75, A165–A176.
    [Google Scholar]
  10. BullJ.M., QuinnR. and DixJ.K.1998. Reflection coefficient calculation from marine high resolution seismic reflection (Chirp) data and application to an archaeological case study.Marine Geophysical Researches20, 1–11.
    [Google Scholar]
  11. CampbellK.J.1984. Predicting offshore soil conditions.Proceedings ‐ Offshore Technology Conference, Houston, TX, OTC Paper 4692, pp. 391–398.
    [Google Scholar]
  12. CarcioneJ.M. and PicottiS.2006. P‐wave seismic attenuation by slow‐wave diffusion: effects of inhomogeneous rock properties.Geophysics71, O1–O8.
    [Google Scholar]
  13. CevatogluM., BullJ.M., VardyM.E., GernonT.M., WrightI.C. and LongD.2015. Gas migration pathways, controlling mechanisms and changes in acoustic properties observed in a controlled sub‐seabed CO2 release experiment.International Journal of Greenhouse Gas Control38, 26–43.
    [Google Scholar]
  14. ChengP. and MargraveG.F.2012. A match‐filter method for Q‐estimation.2012 SEG annual meeting, Expanded Abstracts.
    [Google Scholar]
  15. ChotirosN.P.1994. Reflection and reverberation in normal incidence echo‐sounding.The Journal of the Acoustical Society of America96(5), 2921–2929.
    [Google Scholar]
  16. ClareM.A., TallingP.J., ChallenorP., MalgesiniG. and HuntJ.2014. Distal turbidites reveal a common distribution for large (<0.1 km3) submarine landslide recurrence.Geology42(3), 263.
    [Google Scholar]
  17. ClaytonC.2011. Stiffness at small strain: research and practice.Géotechnique61(1), 5–37.
    [Google Scholar]
  18. ClaytonC.R.I., HightD.W. and HopperR.J.1992. Progressive destructuring of Bothkennar clay: implications for sampling and reconsolida‐tion procedures.Géotechnique42(2), 219–239.
    [Google Scholar]
  19. DossoS.E., DettmerJ., SteiningerG. and HollandC.W.2014. Efficient trans‐dimensional Bayesian inversion for geoacoustic profile estimation.Inverse Problems30.
    [Google Scholar]
  20. DrijkoningenG.G., el AlloucheN., ThorbeckeJ. and BadaG.2012. Nongeometrically converted shear waves in marine streamer data.Geophysics77(6), P45–P56.
    [Google Scholar]
  21. EvansT.2011. A systematic approach to offshore engineering for multiple‐project developments in geohazardous areas. In: Frontiers in Offshore Geotechnics II (ed D.White ), pp. 3–32. CRC Press.
    [Google Scholar]
  22. GardnerW.D., RichardsonM.J. and CacchioneD.A.1989. Sedimentological effects of strong southward flow in the Straits of Florida.Marine Geology86, 155–180.
    [Google Scholar]
  23. GerstoftP.1994. Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions.The Journal of the Acoustical Society of America95(2), 770–782.
    [Google Scholar]
  24. GuoY.‐G., LiF.‐H., LiuJ.‐J., and LiZ.‐L., 2006. Time‐domain geoacoustic inversion based on normal incidence reflection from layered sediment.Chinese Physics Letters23(9), 2483–2486.
    [Google Scholar]
  25. GutowskiM., BullJ., HenstockT., DixJ., HogarthP., LeightonT. et al. 2002. Chirp sub‐bottom profiler source signature design and field testing.Marine Geophysical Researches23, 481–492.
    [Google Scholar]
  26. HamiltonE.L.1972. Compressional‐wave attenuation in marine sediments.Geophysics37, 620–646.
    [Google Scholar]
  27. HamiltonE.L. and BachmanR.T.1982. Sound velocity and related properties of marine sediments.The Journal of the Acoustical Society of America72, 1891–1904.
    [Google Scholar]
  28. HartB.S. and HamiltonT.S.1993. High resolution acoustic mapping of shallow gas in unconsolidated sediments beneath the Strait of Georgia, British Columbia.Geo‐Marine Letters13, 49–55.
    [Google Scholar]
  29. HiltonR.G., GalyA., HoviusN., HorngM.J. and ChenH.2011. Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: an orogenic carbon sequestration mechanism.Geology39(1), 71–74.
    [Google Scholar]
  30. HolbrookW.S., HoskinsH., WoodW.T., StephenR.A. and LizarraldeD.1996. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling.Science273, 1840–1843.
    [Google Scholar]
  31. HollandC. and DettmerJ.2013. In situ sediment dispersion estimates in the presence of discrete layers and gradients.The Journal of the Acoustical Society of America133, 50–63.
    [Google Scholar]
  32. HuwsD.G., DaviesA.M. and PyrahJ.R.2000. A nondestructive technique for predicting the in situ void ratio for marine sediments.Marine Georesources and Geotechnology18(4), 333–346.
    [Google Scholar]
  33. KerS., GonidecY.L. and GilbertD.2013. Multiresolution seismic data fusion with a generalized wavelet‐based method to derive sub‐seabed acoustic properties.Geophysical Journal International195, 1370.
    [Google Scholar]
  34. L’HeureuxJ.‐S. and LongM.2016. Correlations between shear wave velocity and geotechnical parameters in Norwegian clays. In: Proceedings of the 17th Nordic Geotechnical Meeting, Reykjavik, Iceland.
    [Google Scholar]
  35. L’HeureuxJ.‐S., LongvaO., SteinerA., HansenL., VardyM., VannesteM. et al. 2012. Identification of weak layers and their role for the stability of slopes at Finneidfjord, northern Norway. In: Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research, Vol. 31, pp. 321–330. Heidelberg, Germany: Springer.
    [Google Scholar]
  36. LeeM.W.2004. Elastic velocities of partially gas‐saturated unconsolidated sediments.Marine and Petroleum Geology21, 641–650.
    [Google Scholar]
  37. LeiX. and MorganE.C.2015. Characterization of gas‐charged sediments from joint inversion of Qp and Qs.Proceedings of the SEG Annual Meeting, 2765–2770.
    [Google Scholar]
  38. LeightonT. and RobbG.2008. Preliminary mapping of void fractions and sound speeds in gassy marine sediments from subbottom profiles.JASA Express Letters124(5), EL313–EL320.
    [Google Scholar]
  39. LichtschlagA., JamesR.H., StahlH. and ConnellyD.2015. Effect of a controlled sub‐seabed release of CO2 on the biogeochemistry of shallow marine sediments, their pore waters, and the overlying water column.International Journal of Greenhouse Gas Control38, 80–92.
    [Google Scholar]
  40. LunneT.2012. The Fourth James K. Mitchell Lecture: The CPT in offshore soil investigations ‐ a historic perspective.Geomechanics and Geoengineering7(2), 75–101.
    [Google Scholar]
  41. LuS.M. and McMechanG.A.2002. Estimation of gas hydrate and free gas saturation, concentration, and distribution from seismic data.Geophysics67, 582–593.
    [Google Scholar]
  42. MaX.‐Q.2002. Simultaneous inversion of prestack seismic data for rock properties using simulated annealing.Geophysics67(6), 1877–1885.
    [Google Scholar]
  43. MallickS.2001. Prestack waveform inversion using a genetic algorithm ‐ The present and the future.CSEG Recorder26(6), 78–84.
    [Google Scholar]
  44. Marin‐MorenoH., MinshullT.A. and EdwardsR.A.2013. Inverse modelling and seismic data constraints on overpressure generation by disequilibrium compaction and aquathermal pressuring: application to the Eastern Black Sea Basin.Geophysical Journal International194, 814–833.
    [Google Scholar]
  45. Marin‐MorenoH., SahooS.K. and BestA.J.2017. Theoretical modelling insights into elastic wave attenuation mechanisms in marine sediments with pore‐filling methane hydrate.Journal Geophysical Research, Solid Earth, 122, 1835–1847, doi:10.1002/2016JB013577.
    [Google Scholar]
  46. MassonD.G., WynnR.B. and TallingP.J.2010. Large landslides on passive continental margins: processes, hypotheses and outstanding questions. In: Submarine Mass Movements and Their Consequences, pp. 153–165. SpringerNetherlands.
    [Google Scholar]
  47. MathysM., ThiessenO., TheilenF. and SchmidtM.2005. Seismic characterisation of gas‐rich near surface sediments in the Arkona Basin, Baltic Sea.Marine Geophysical Researches26, 207–224.
    [Google Scholar]
  48. MavkoG.M. and NurA.1979. Wave attenuation in partially saturated rocks.Geophysics44, 161–178.
    [Google Scholar]
  49. MayallM., JonesE. and CaseyM.2006. Turbidite channel reservoirs— Key elements in facies prediction and effective development.Marine and Petroleum Geology23(8), 821–841.
    [Google Scholar]
  50. MorganE., VannesteM., LecomteI., BaiseL., LongvaO. and McAdooB.2012. Estimation of free gas saturation from seismic reflection surveys by the genetic algorithm inversion of a P‐wave attenuation model.Geophysics77(4), R175–R187.
    [Google Scholar]
  51. MorganE., VannesteM. and VardyM.E.2014. Characterisation of the slope destabilizing effects of gas charged sediments via seismic surveys.Offshore Technology Conference, 14OTC‐P‐963‐OTC.
    [Google Scholar]
  52. NauroyJ.‐F., DuboisJ.‐C., ColliatJ.‐L., KervadecJ.‐P. and MeunierJ.1998. The GEOSIS Method for Integrating VHR Seismic and Geotechnical Data in Offshore Site Investigations.Offshore Site Investigation and Foundation Behaviour ‐ New Frontiers: Proceedings of an International Conference, pp. 175–198.
    [Google Scholar]
  53. OhtaK., OkabeK., MorishitaI., OzakiS. and FriskG.V.2005. Inversion for seabed geoacoustic properties in shallow water experiments.Acoustical Science and Technology26(4), 326–337.
    [Google Scholar]
  54. PandaS., LeBlancL. and SchockS.1994. Sediment classification based on impedance and attenuation estimation.The Journal of the Acoustical Society of America96(5), 3022–3035.
    [Google Scholar]
  55. PinsonL.2010. Derivation of acoustic and physical properties from high‐resolution seismic reflection data.Unpublished PhD thesis, University of Southampton, UK.
    [Google Scholar]
  56. PinsonL., HenstockT., DixJ. and BullJ.2008. Estimating quality factor and mean grain size of sediments from high‐resolution marine seismic data.Geophysics73(4), G19–G28.
    [Google Scholar]
  57. PinsonL., VardyM., DixJ., HenstockT., BullJ. and MaclachlanS.2013. Deglacial history of glacial lake Windermere, UK:implications for the central British and Irish Ice Sheet.Journal of Quaternary Science28(1), 83–94.
    [Google Scholar]
  58. PowerP., ClareM., RushtonD. and RattleyM.2011. Reducing geo‐risks for offshore developments. In: Geotechnical Safety and Risk (eds N.Vogt , B.Schuppener , D.Straub and G.Bräu ), pp. 217–224: 3rd International Symposium on Geotechnical Risk and Safety. Bundesanstalt fur Wasserbau.
    [Google Scholar]
  59. PriestJ., DruceM., RobertsJ., SchultheissP., NakatsukaY. and SuzukiK.2015. PCATS Triaxial: a new geotechnical apparatus for characterizing pressure cores from the Nankai Trough, Japan.Marine and Petroleum Geology66(2), 460–470.
    [Google Scholar]
  60. ProvenzanoG., VardyM.E. and HenstockT.J.2016. Pre‐stack waveform inversion of VHF marine seismic reflection data – A case study in Norway.Near Surface Geoscience 2016 –Second Applied Shallow Marine Geophysics Conference.
    [Google Scholar]
  61. ProvenzanoG., VardyM.E. and HenstockT.J.2017. Pre‐stack full waveform inversion of ultra‐high‐frequency marine seismic reflection data.Geophysical Journal International209, 1593–1611..
    [Google Scholar]
  62. RichardsonM.D. and BriggsK.B.1993. On the use of acoustic impedance values to determine sediment properties.Proceedings of the Institute of Acoustics15(2), 15–24.
    [Google Scholar]
  63. RobbG.B.N., BestA.I., DixJ.K., BullJ.M., LeightonT.G. and WhiteP.R.2006. The frequency dependence of compressional wave velocity and attenuation coefficient of intertidal marine sediments.The Journal of the Acoustical Society of America120(5), 2526–2537.
    [Google Scholar]
  64. RossiG., GeiD., BöhmG., MadrussaniG. and CarcioneJ.M.2007. Attenuation tomography: an application to gas‐hydrate and free‐gas detection.Geophysical Prospecting55, 655–669.
    [Google Scholar]
  65. RothwellR.G. and RackF.R.2006. New techniques in sediment core analysis: an introduction.Geological Society of London Special Publications267(1), 1–29.
    [Google Scholar]
  66. SadlerP.M.1981. Sediment accumulation rates and the completeness of stratigraphic sections.The Journal of Geology569–584.
    [Google Scholar]
  67. SchockS., LeBlancL. and MayerL.1989. Chirp subbottom profiler for quantitative sediment analysis.Geophysics54(4), 445–450.
    [Google Scholar]
  68. ScourseJ.D., HaapaniemiA.I., Colmenero‐HidalgoE., PeckV.L., HallI.R., AustinW.E. et al. 2009. Growth, dynamics and deglaciation of the last British‐Irish ice sheet: the deep‐sea ice‐rafted detritus record.Quaternary Science Reviews28, 3066–3084.
    [Google Scholar]
  69. SeongW. and ParkC.2001. Geoacoustic inversion via genetic algorithm and its application to manganese sediment identification.Marine Georesources and Geotechnology19(1), 37–51.
    [Google Scholar]
  70. SobreiraJ.F.F., LipskiM., CarvalhoL.A. and MarquezE.2010. Geotechnical characterization based on seismic data approaches applied in Campos Basin, southeastern Brazilian Margin.The Leading Edge29(7), 842–846.
    [Google Scholar]
  71. SoccoV.L., BoieroD., MaraschiniM., VannesteM., MadshusC., WesterdahlH. et al. 2011. On the use of the Norwegian Geotechnical Institute’s prototype seabed‐coupled shear wave vibrator for shallow soil characterization –II. Joint inversion of multimodal Love and Scholte waves.Geophysical Journal International185, 237–252.
    [Google Scholar]
  72. SolheimA., BrynP., SejrupH.P. and BergK.2005. Ormen Lange—an integrated study for the safe development of a deep‐water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary.Marine and Petroleum Geology22, 1–9.
    [Google Scholar]
  73. SternlichtD.D. and de MoustierC.P.2003. Remote sensing of sediment characteristics by optimized echo‐envelope matching.The Journal of the Acoustical Society of America114(5), 2727–2743.
    [Google Scholar]
  74. StevensonI., McCannC. and RuncimanP.2002. An attenuation‐based sediment classification technique using Chirp sub‐bottom profiler data and laboratory acoustic analysis.Marine Geophysical Researches23, 277–298.
    [Google Scholar]
  75. StokerM., BradwellT., HoweJ., WilkinsonI. and McIntyreK.2009. Lateglacial ice‐cap dynamics in NW Scotland: evidence from the fjords of the Summer Isles region.Quaternary Science Reviews28, 3161–3184.
    [Google Scholar]
  76. StokerM. and BradwellT.2009. Neotectonic deformation in a Scottish fjord, Loch Broom, NW Scotland.Scottish Journal of Geology45(2), 107–116.
    [Google Scholar]
  77. StowD.A.2005. Sedimentary Rocks in the Field: A Color Guide. Gulf Professional Publishing.
    [Google Scholar]
  78. TerzaghiK.1925. Principles of soil mechanics.Engineering News‐ Record95, 19–27.
    [Google Scholar]
  79. TerzaghiK.1936. Simple tests determine hydrostatic uplift.Engineering News‐Record116(25), 872–875.
    [Google Scholar]
  80. TothZ., SpiessV., MogollonJ.M. and JensenJ.B.2014. Estimating the free gas content in Baltic Sea sediments using compressional wave velocity from marine seismic data.Journal of Geophysics: Solid Earth.
    [Google Scholar]
  81. TothZ., SpiessV. and KiellH.2015. Frequency dependence in seismoa‐coustic imaging of shallow free gas due to gas bubble resonance.Journal of Geophysics: Solid Earth.
    [Google Scholar]
  82. TuckerM.E.2003. Sedimentary Rocks in the Field. John Wiley & Sons.
    [Google Scholar]
  83. VannesteM., MadshusC., SoccoV.L., MaraschiniM., SparrevikH., WesterdahlK. et al. 2011. On the use of the Norwegian Geotechnical Institute’s prototype seabed‐coupled shear wave vibrator for shallow soil characterization –I. Acquisition and processing of multi‐modal surface waves.Geophysical Journal International185, 221–236.
    [Google Scholar]
  84. VannesteM., L’HeureuxJ.‐S., BrendryenJ., BaetenN., LarbergJ., VardyM. et al. 2012. Assessing offshore geohazards: a multi‐disciplinary research initiative to understand shallow landslides and their dynamics in coastal and deepwater environments, Norway. In: Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research, Vol. 31 (eds Y.Yamada , K.Kawamura , K.Ikehara , Y.Ogawa , R.Urgeles , D.Mosher et al.), pp. 29–41. Heidelberg, Germany: Springer.
    [Google Scholar]
  85. VannesteM., SultanN., GarzigliaS., ForsbergC.F. and L’HeureuxJ.‐S., 2014. Seafloor instabilities and sediment deformation processes: The need for integrated, multi‐disciplinary investigations, Marine Geology352, p. 183–214.
    [Google Scholar]
  86. VannesteM., ForsbergC., KnudsenS., KvalstadT., L’HeureuxJ.‐S., LunneT. et al. 2015. Integration of very high‐resolution seismic and CPTU data from a coastal area affected by shallow landsliding–the Finneidfjord natural laboratory.Proceedings of the Annual Offshore Technology Conference, OTC‐TC‐P‐686.
    [Google Scholar]
  87. VardyM.2015. Deriving shallow‐water sediment properties using post‐stack acoustic impedance inversion.Near Surface Geophysics13(2), 143–154.
    [Google Scholar]
  88. VardyM., L’HeureuxJ.‐S., VannesteM., LongvaO., SteinerA., ForsbergC. et al. 2012. Multidisciplinary investigation of a shallow near‐shore landslide, Finneidfjord, Norway.Near Surface Geophysics10, 267–277.
    [Google Scholar]
  89. VardyM., VannesteM., HenstockT., MorganE. and PinsonL.2015. Can high‐resolution marine geophysical data be inverted for soil properties?Proceedings of the Institute of Acoustics37(1), 149–156.
    [Google Scholar]
  90. WagnerC., GonzalezA., AgarwalV., KoesoemadinataA., NgD., TraresS. et al. 2012. Quantitative application of poststack acoustic impedance inversion to subsalt reservoir development.The Leading Edge31(5), 528– 537.
    [Google Scholar]
  91. WangJ. and StewartR.2015. Inferring marine sediment type using Chirp sonar data: Atlantis field, Gulf of Mexico.Proceedings of the SEG Annual Meeting, 2385–2390.
    [Google Scholar]
  92. WhiteJ.1975. Computed seismic speeds and attenuation in rocks with partial gas saturation.Geophysics40, 224–232.
    [Google Scholar]
  93. WidessM.B.1982. Quantifying the resolving power of seismic systems.Geophysics47(8), 1160–1173.
    [Google Scholar]
  94. WinklerK. and NurA.1979. Pore fluids and seismic attenuation in rocks.Geophysical Research Letters6, 1–4.
    [Google Scholar]
  95. WinsborrowG., HuwsD.G. and MuyzertE.2005. The estimation of shear‐wave statics using in situ measurements in marine near‐surface sediments.Geophysical Prospecting53, 557–577.
    [Google Scholar]
  96. ZhangA. and DigbyA.2013. Analysis of amplitude, reflection strength, and acoustic impedance of AUV sub‐bottom profiles with application to deepwater near‐surface sediments.Proceedings of the Annual\Offshore Technology Conference OTC‐23978.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017024
Loading
/content/journals/10.3997/1873-0604.2017024
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error