1887
Volume 16 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

A publicly available seismic dataset from a lab experiment shows the dependence of quality factor simultaneously on water saturation and stress in unconsolidated sand. Large gradients (e.g., > 10 m−1) necessitate a spectral ratio method modified to assume that changes with each ray path, thereby eliminating false values (e.g., < 0). Interval values increase the most with depth and stress in dry sand and the least in partially saturated sand ( and ) where attenuation created by local fluid flow reaches a maximum. Expected values can be extrapolated from and are bounded by of the dry and partially saturated media (e.g., ). deviations outside this range may be explained by changes in effective stress, attenuation mechanism, or sediment composition. Field estimation of seismic attenuation in natural settings may be helped by these constraints, although attenuation remains subject to careful consideration of other factors, e.g., grain size, sorting, and shape.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017048
2017-09-01
2020-04-06
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.1980. Quantitative Seismology. New York, USA: W. H. Freeman and Co.
  2. ArnoldJ.G., SrinivasanR., MuttiahR.S. and WilliamsJ.R.1998. Large area hydrologic modeling and assessment part I: model development.Journal of the American Water Resources Association34(1), 73–89.
    [Google Scholar]
  3. BachrachR., DvorkinJ. and NurA.1998. High‐resolution shallow‐seismic experiments in sand. Part 2: velocities in shallow unconsolidated sand.Geophysics63(4), 1234–1240.
    [Google Scholar]
  4. BadriM. and MooneyH.M.1987. Q measurements from compressional seismic waves in unconsolidated sediments.Geophysics52(6), 772–784.
    [Google Scholar]
  5. BarrièreJ.BordesC., BritoD., SénéchalP. and PerroudH.2012. Laboratory monitoring of P waves in partially saturated sand.Geophysical Journal International191(3), 1152–1170.
    [Google Scholar]
  6. BâthM.1974. Spectral Analysis in Geophysics. Oxford, UK: Elsevier Science Limited.
  7. BeardD.C. and WeylP.K.1973. Influence of texture on porosity and permeability of unconsolidated sand.AAPG Bulletin57(2), 349–369.
    [Google Scholar]
  8. BinleyA., WinshipP., MiddletonR., PokarM. and WestJ.2001. High‐resolution characterization of vadose zone dynamics using cross‐borehole radar.Water Resources Research37(11), 2639–2652.
    [Google Scholar]
  9. BiotM.A.1956. Theory of elastic waves in a fluid‐saturated porous solid. 1. Low frequency range.Journal of the Acoustical Society of America28, 168–178.
    [Google Scholar]
  10. BishopA.W.1960. The Principles of Effective Stress.Norges Geotekniske Institutt.
    [Google Scholar]
  11. BlairD. and SpathisA.1984. Seismic source influence in pulse attenuation studies.Journal of Geophysical Research89(B11), 9253–9258.
    [Google Scholar]
  12. BrooksR. and CoreyA.1964. Hydraulic Properties of Porous Media, Hydrology Papers, No. 3. Ft Collins, Colorado: Colorado State University.
  13. CadoretT., MavkoG. and ZinsznerB.1998. Fluid distribution effect on sonic attenuation in partially saturated limestones.Geophysics63(1), 154–160.
    [Google Scholar]
  14. CervenyV.2005. Seismic Ray Theory. Cambridge, UK: Cambridge University Press.
  15. CervenyV., LangerJ. and PšenčíkI.1974. Computation of geometric spreading of seismic body waves in laterally inhomogeneous media with curved interfaces.Geophysical Journal of the Royal Astronomical Society of London38, 9–19.
    [Google Scholar]
  16. ChilingarG.V.1964. Relationship between porosity, permeability, and grain‐size distribution of sands and sandstones, In: can Straaten (ed L.M.J.U. ) Deltaic and Shallow Marine Deposits, Developments in Sedimentology1, 71–74.
    [Google Scholar]
  17. DesbaratsA.1995. Upscaling capillary pressure‐saturation curves in heterogeneous porous media.Water Resource Research31(2), 281–288.
    [Google Scholar]
  18. DuttaN. and OdéH.1979. Attenuation and dispersion of compres‐sional waves in fluid‐filled porous rocks with partial gas saturation (white model)‐part I: Biot theory.Geophysics44(11), 1777–1788.
    [Google Scholar]
  19. DuttaT., MavkoG. and MukerjiT.2010. Improved granular medium model for unconsolidated sands using coordination number, porosity, and pressure relations.Geophysics75(2), E91–E99.
    [Google Scholar]
  20. EngelJ., SchanzT. and LauerC.2005. State parameters for unsaturated soils, basic empirical concepts. In: Unsaturated Soils: Numerical and Theoretical Approaches (ed T.Schanz , pp. 125–138. Springer Berlin Heidelberg.
    [Google Scholar]
  21. EngelhardL.1996. Determination of seismic‐wave attenuation by complex trace analysis.Geophysical Journal International125(2), 608–622.
    [Google Scholar]
  22. EvansB.J.1997. A Handbook for Seismic Data Acquisition in Exploration. Tulsa, OK: Society of Exploration Geophysics.
  23. FredlundD.G. and XingA.1994. Equations for the soil‐water characteristic curve.Canadian Geotechnical Journal31(4), 521–532.
    [Google Scholar]
  24. FuttermanW.I.1962. Dispersive body waves.Journal of Geophysical Research67(13), 5279–5291.
    [Google Scholar]
  25. GassmannF.1951. Uber die Elastizitat poroser Medien.Veirteljahrsschrift der Naturforshenden Gesellshaft in Zurich96, 1–23.
    [Google Scholar]
  26. Van GenuchtenM.T.1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils.Soil Science Society of America Journal44, 892–898.
    [Google Scholar]
  27. GillhamR.W.1984. The capillary fringe and its effect on water‐table response.Journal of Hydrology67(1–4), 307–324.
    [Google Scholar]
  28. HaaseA.B. and StewartR.R.2006. Stratigraphic attenuation of seismic waves.CREWES Research Report, Consortium for Research in Elastic Wave Exploration Seismology, Calgary, Alberta, Canada.
    [Google Scholar]
  29. HaaseA.B. and StewartR. R.2010. Near‐field seismic effects in a homogeneous medium and their removal in vertical seismic profile attenuation estimates.Geophysical Prospecting58(6), 1023–1032.
    [Google Scholar]
  30. HamiltonE.L.1976. Sound attenuation as a function of depth in the sea floor.Journal of the Acoustical Society of America59, 528.
    [Google Scholar]
  31. JongmansD.1990. In‐situ attenuation measurements in soils.Engineering Geology29(2), 99–118.
    [Google Scholar]
  32. KnopoffL.1964. Q.Reviews of Geophysics2, 625–660.
    [Google Scholar]
  33. KrantzR.W.1991. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures.Tectonophysics188(1–2), 203–207.
    [Google Scholar]
  34. LorenzoJ.M., SmolkinD.E., WhiteC., ChollettS.R. and SunT.2013. Benchmark hydrogeophysical data from a physical seismic model.Computers and Geosciences50(0), 44–51.
    [Google Scholar]
  35. MavkoG., MukerjiT. and DvorkinJ.2005. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge, UK: Cambridge University Press.
  36. MavkoG. and NurA.1975Melt squirt in the asthenosphere.Journal of Geophysical Research80, 1444–1448.
    [Google Scholar]
  37. MateevaA.2003. Quantifying the uncertainties in absorption estimates from VSP spectral ratios. Center for Wave Phenomena— Report 457, 1–14. Colorado School of Mines, Golden, Colorado.
    [Google Scholar]
  38. MindlinR.1949. Compliance of elastic bodies in contact.Journal of Applied Mechanics16.
    [Google Scholar]
  39. MurphyIIIW.F.1982. Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass.Journal of the Acoustical Society of America71, 1458.
    [Google Scholar]
  40. OelzeM.L., O‘BrienW.D. and DarmodyR.G.2002. Measurement of attenuation and speed of sound in soils.Soil Science Society of America Journal66(3), 788–796.
    [Google Scholar]
  41. PetakW.J. and AtkissonA.A.1982. Natural hazard risk assessment and public policy: anticipating the unexpected. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  42. PhamN.H., CarcioneJ.M., HelleH.B. and UrsinB.2002. Wave velocities and attenuation of shaley sandstones as a function of pore pressure and partial saturation.Geophysical Prospecting50(6), 615–627.
    [Google Scholar]
  43. PrideS.R. and BerrymanJ.G.2003. Linear dynamics of double‐porosity dual‐permeability materials. I. Governing equations and acoustic attenuation.Physical Reviews E68(3), 036603.
    [Google Scholar]
  44. RaikesS. and WhiteR.2006. Measurements of earth attenuation from downhole and surface seismic recordings.Geophysical Prospecting32(5), 892–919.
    [Google Scholar]
  45. ReineC., van der BaanM. and ClarkR.2009. The robustness of seismic attenuation measurements using fixed‐and variable‐window time‐frequency transforms.Geophysics74(2), WA123–WA135.
    [Google Scholar]
  46. SantamarinaJ. and ChoG.C.2004. Soil behavior: the role of particle shape.Proceedings of the Skempton Conference, London, UK, March, pp. 1–14.
    [Google Scholar]
  47. ShenJ., CraneJ.M., LorenzoJ.M. and WhiteC.D.2016. Seismic velocity prediction in shallow (<30 m) partially saturated, unconsolidated sediments using effective medium theory.Journal of Environmental & Engineering Geophysics21(2), 67–78.
    [Google Scholar]
  48. SlotnickM.1936. On seismic computations, with applications, I.Geophysics1 (1), 9–22.
    [Google Scholar]
  49. Sioseis2011. A computer system for enhancing and manipulating marine seismic reflection and refraction data. http://sioseis.ucsd.edu/, version 2011.3.16 [Accessed 15 Dec. 2011].
  50. SongY.‐S., HwangW.‐K., JungS.‐J. and KimT.‐H.2012. A comparative study of suction stress between sand and silt under unsaturated conditions.Engineering Geology124(0), 90–97.
    [Google Scholar]
  51. StockwellJ.W.1999. The CWP/SU: Seismic Unix package.Computers & Geosciences25, 415–419.
    [Google Scholar]
  52. TarifP. and BourbieT.1987. Experimental comparison between spectral ratio and rise time techniques for attenuation measurement.Geophysical Prospecting35, 668–680.
    [Google Scholar]
  53. TerzaghiK., PeckR.B. and MesriG.1996. Soil Mechanics in Engineering Practice. Wiley‐Interscience.
  54. ThakurG.1991. Waterflood surveillance techniques—A reservoir management approach.Journal of Petroleum Technology43, 1180–1188.
    [Google Scholar]
  55. TomsJ., MüllerT. and GurevichB.2007. Seismic attenuation in porous rocks with random patchy saturation.Geophysical Prospecting55, 671–678.
    [Google Scholar]
  56. TonnR.1991. The determination of the seismic quality factor Q from VSP data: a comparison of different computational methods.Geophysical Prospecting39, 1–27.
    [Google Scholar]
  57. TurnerJ.S.1979. Buoyancy Effects in Fluids. Cambridge, UK: Cambridge University Press.
  58. VincentP.D., SteeplesD.W., TsofliasG.P. and SloanS.D.2005. Two approaches to noise tests. SEG technical program, Expanded Abstracts 24, 1180–1183.
    [Google Scholar]
  59. WinklerK.W.1985. Dispersion analysis of velocity and attenuation in Berea sandstone.Journal of Geophysical Research90(6), 793–796.
    [Google Scholar]
  60. WinklerK.W. and NurA.1982. Seismic attenuation; effects of pore fluids and frictional sliding.Geophysics47(1), 2–16.
    [Google Scholar]
  61. WuR.‐S. and AkiK.1988. Introduction: seismic wave scattering in three‐dimensionally heterogeneous earth.Pure and Applied Geophysics128, 1–6.
    [Google Scholar]
  62. WuR.S.1985. Multiple scattering and energy transfer of seismic waves‐separation of scattering effect from intrinsic attenuation–I. Theoretical modelling.Geophysical Journal of the Royal Astronomical Society of London82, 57–80.
    [Google Scholar]
  63. ZimmerM., PrasadM. and MavkoG.2002. Pressure and porosity influences on VP‐VS ratio in unconsolidated sands.The Leading Edge21, 178–183.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017048
Loading
/content/journals/10.3997/1873-0604.2017048
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error