1887
Volume 16 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Groundwater movement in karst aquifers is characterised by high‐velocity fissure and conduit flow paths, and in coastal karst aquifers, these act as pathways for saline intrusion and freshwater discharge to the sea. This paper examines groundwater movement in two neighbouring catchments in the west of Ireland that represent canonical coastal karst aquifers dominated by discharges in the intertidal zone and at offshore submarine springs. Terrestrial and surface‐towed marine electrical resistivity tomography, coupled with ancillary hydrogeological data, identifies the influence of faulting and conduits on groundwater egress/saltwater ingress. The on‐shore and off‐shore subsurface geometry of major fault zones is identified, and the tidal influence of seawater and ground‐water flow is demonstrated in these zones and karst springs. Imaging of these sub‐surface structures is a pre‐requisite for numerical modelling of current and future climate‐driven freshwater–seawater interactions in karst coastal aquifers.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017062
2017-10-01
2024-03-29
Loading full text...

Full text loading...

References

  1. AmiduS.A. and DunbarJ.A.2008. An evaluation of the electrical‐resistivity method for water‐reservoir salinity studies.Geophysics73(4), G39–G49.
    [Google Scholar]
  2. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics.Transactions of the AIME146, 5467.
    [Google Scholar]
  3. ArmstrongG.D.1997. Potential field signatures and flexural rigidity of the lithosphere in Ireland.PhD thesis, National University of Ireland, Galway.
    [Google Scholar]
  4. BefusK.M., CardenasM.B., TaitD.R. and ErlerD.V.2014. Geoelectrical signals of geologic and hydrologic processes in a fringing reef lagoon setting.Journal of Hydrology517(0), 508–520.
    [Google Scholar]
  5. BelavalM., LaneJ.W.Jr.,LesmesD.P. and KinekeG.C.2003. Continuous‐resistivity profiling for coastal groundwater investigations: three case studies. Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP). Environmental and Engineering Geophysics Society, CD‐ROM, San Antonio, Texas.
    [Google Scholar]
  6. BenseV.F., GleesonT., LovelessS.E., BourO. and ScibekJ.2013. Fault zone hydrogeology.Earth‐Science Reviews127(0), 171–192.
    [Google Scholar]
  7. BinleyA.2013. R2 version 2.7a February 2013.Lancaster Environment Centre, Lancaster University, Lancaster, UK.http://www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm
    [Google Scholar]
  8. BonacciO. and Roje‐BonacciT.1997. Sea water intrusion in coastal karst springs: example of the Blaž Spring (Croatia).Hydrological Sciences Journal42(1), 89–100.
    [Google Scholar]
  9. BoycottT. and BruceC.2003. In: Caves of County Clare and South Galway (ed G.Mullan ), University of Bristol Spelaeological Society, Bristol.
    [Google Scholar]
  10. BreierJ.A., BreierC.F. and EdmondsH.N.2005. Detecting submarine groundwater discharge with synoptic surveys of sediment resistivity, radium, and salinity.Geophysical Research Letters32(23), L23612.
    [Google Scholar]
  11. BurnettW.C., AggarwalP.K., AureliA., BokuniewiczH., CableJ.E., CharetteM.A., et al. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods.Science of The Total Environment367(2–3), 498–543.
    [Google Scholar]
  12. CaveR.R. and HenryT.2011. Intertidal and submarine groundwater discharge on the west coast of Ireland.Estuarine, Coastal and Shelf Science92(3), 415–423.
    [Google Scholar]
  13. ClaerboutJ.F. and MuirF.1973. Robust modeling with erratic data.Geophysics38(5), 826–844.
    [Google Scholar]
  14. CoggonJ.H.1971. Electromagnetic and electrical modeling by the finite element method.Geophysics36(1), 132–155.
    [Google Scholar]
  15. ComteJ.‐C., CassidyR., NitscheJ., OfterdingerU., PilatovaK. and FlynnR.2012. The typology of Irish hard‐rock aquifers based on an integrated hydrogeological and geophysical approach.Hydrogeology Journal20(8), 1569–1588.
    [Google Scholar]
  16. CroninC., DalyD., DeakinJ., KellyD., DrewD. and JohnstonP.1999. Ballyvaughan Public Water Supply—Groundwater protection zones.Geological Survey of Ireland and Clare County Council.
    [Google Scholar]
  17. DahlinT. and ZhouB.2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays.Geophysical Prospecting52(5), 379–398.
    [Google Scholar]
  18. Day‐LewisF.D. and LaneJ.W.2004. Assessing the resolution‐dependent utility of tomograms for geostatistics. In: Geophysical Research Letters, Vol. 31, no. 7.
    [Google Scholar]
  19. Day‐LewisF.D., WhiteE.A., JohnsonC.D., LaneJ.W. and BelavalM.2006. Continuous resistivity profiling to delineate submarine ground‐water discharge—Examples and limitations.The Leading Edge25(6), 724–728.
    [Google Scholar]
  20. DrewD.P.1999. Characteristics of the karst system. In: Karst Hydrogeology and human activity (eds D.Drew and H.Hotzl ). Balkema, Netherlands, International Association of Hydrogeologists.
    [Google Scholar]
  21. DrewD.P. and DalyD.1993. Groundwater and karstification in Mid‐Galway, South Mayo and North Clare. A Joint Report: Department of Geography, Trinity College Dublin and Groundwater Section, Geological Survey of Ireland, Geological Survey of Ireland.
    [Google Scholar]
  22. DrewD.P.2003. The Hydrology of the Burren and of the Clare and Galway Lowlands, in Mullan, G. , ed., Caves of County Clare and South Galway: University of Bristol Spelaeological Society, Bristol, England, p. 31‐46.
    [Google Scholar]
  23. EvansJ.P., ForsterC.B. and GoddardJ.V.1997. Permeability of fault‐related rocks, and implications for hydraulic structure of fault zones.Journal of Structural Geology19(11), 1393–1404.
    [Google Scholar]
  24. EvansR.L. and LizarraldeD.2003. Geophysical evidence for karst formation associated with offshore groundwater transport: an example from North Carolina.Geochemistry Geophysics Geosystems4(8), 1069.
    [Google Scholar]
  25. FetterC.W.2001. Applied Hydrogeology, 4th edn. New Jersey: Prentice‐ Hall, Inc.
    [Google Scholar]
  26. FleuryP., BakalowiczM. and de MarsilyG.2007. Submarine springs and coastal karst aquifers: a review.Journal of Hydrology339(1–2), 79–92.
    [Google Scholar]
  27. FordD.C. and WilliamsP.2007. Karst Hydrogeology and Geomorphology. Wiley.
    [Google Scholar]
  28. FraserD.C.1969. Contouring of VLF‐EM data.Geophysics34(6), 958–967.
    [Google Scholar]
  29. FreezeR.A. and CherryJ.A.1979. Groundwater. Englewood Cliffs, NJ: Prentice‐Hall.
    [Google Scholar]
  30. GeoAcoustics2009. GeoPulse Digital Profiler Operation Manual 9‐DP00‐6100/A. GeoAcoustics Limited.
    [Google Scholar]
  31. Geotomo Software2010. Res2dinv ver.3.59. In: Geotomo Software (ed M.H.Loke ).
    [Google Scholar]
  32. GillL.W., NaughtonO. and JohnstonP.M.2013. Modeling a network of turloughs in lowland karst.Water Resources Research49(6), 3487–3503.
    [Google Scholar]
  33. GSI2004. Kinvara/Gort GWB: summary of initial characterisation.Geological Survey of Ireland, Dublin, Ireland.
    [Google Scholar]
  34. GSI2005. Bedrock geology of Ireland (1:100,000 scale).Geological Survey of Ireland, Dublin, Ireland.
    [Google Scholar]
  35. GSI2007. Karst database. Geological Survey of Ireland, Dublin, Ireland.
    [Google Scholar]
  36. GSI2015. Karst booklet. Karst Working Group, Geological Survey of Ireland, www.gsi.ie.
    [Google Scholar]
  37. GSI and RBD Consultants2004. Ballyvaughan GWB: summary of initial characterisation.Geological Survey of Ireland, Dublin, Ireland.
    [Google Scholar]
  38. GuntherT.2007. DC2DInvRes—Direct Current 2D Inversion and Resolution.http://dc2dinvres.resistivity.net/.
  39. HendersonR., Day‐LewisF., AbarcaE., HarveyC., KaramH., LiuL., et al., 2009. Marine electrical resistivity imaging of submarine ground‐water discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA.Hydrogeology Journal18(1), 173–185.
    [Google Scholar]
  40. HolcombeH.T. and JiracekG.R.1984. Three⊠dimensional terrain corrections in resistivity surveys.Geophysics49(4), 439–452.
    [Google Scholar]
  41. HovlandM. and JuddA.G.1988. Seabed Pockmarks and Seepages. London: Graham and Trotman.
    [Google Scholar]
  42. Infomar2006. Lidar Galway 6m 2006. Marine Institute, Galway, Ireland.
    [Google Scholar]
  43. IPCC2007. Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    [Google Scholar]
  44. IRIS2009. Syscal pro. IRIS Instruments.
  45. KaufmannO., DeceusterJ. and QuinifY.2012. An electrical resistivity imaging‐based strategy to enable site‐scale planning over covered palaeokarst features in the Tournaisis area (Belgium).Engineering Geology133–134(0), 49–65.
    [Google Scholar]
  46. KellyB.F.J., AllenD., YeK. and DahlinT.2009. Continuous electrical imaging for mapping aquifer recharge along reaches of the Namoi River in Australia.Proceedings of the EEGS Near Surface Geophysics Conference, 2009, pp. 259–270.
    [Google Scholar]
  47. KhalilM.H.2006. Geoelectric resistivity sounding for delineating salt water intrusion in the Abu Zenima area, West Sinai, Egypt.Journal of Geophysics and Engineering3(3), 243.
    [Google Scholar]
  48. KløveB., Ala‐AhoP., BertrandG., GurdakJ.J., KupfersbergerH., KvœrnerJ., et al. 2014. Climate change impacts on groundwater and dependent ecosystems.Journal of Hydrology 518, Part B, 250–266.
    [Google Scholar]
  49. LambeckK. and PurcellA.P.2001. Sea‐level change in the Irish Sea since the last glacial maximum: constraints from isostatic modelling.Journal of Quaternary Science16, 497–506.
    [Google Scholar]
  50. LandL.A. and PaullC.K.2000. Submarine karst belt rimming the continental slope in the Straits of Florida.Geo‐Marine Letters20(2), 123–132.
    [Google Scholar]
  51. LokeM.H.2010. Rapid 2‐D Resistivity & IP inversion using the least‐squares method, Res2dinv ver.3.59, Manual.Geotomo Software, Malaysia.
    [Google Scholar]
  52. LokeM.H.2012. 2‐D and 3‐D electrical imaging surveys.Geotomo Software, Malaysia.
    [Google Scholar]
  53. LokeM.H., ChambersJ.E., RuckerD.F., KurasO. and WilkinsonP.B.2013. Recent developments in the direct‐current geoelectrical imaging method.Journal of Applied Geophysics95(0), 135–156.
    [Google Scholar]
  54. LokeM.H. and LaneJ.W.2004. Inversion of data from electrical resistivity imaging surveys in water‐covered areas.Exploration Geophysics35(4), 266–271.
    [Google Scholar]
  55. ManheimF.T., KrantzD.E. and BrattonJ.F.2004. Studying ground water under Delmarva Coastal Bays using electrical resistivity.Ground Water42(7), 1052–1068.
    [Google Scholar]
  56. MansoorN. and SlaterL.2007. Aquatic electrical resistivity imaging of shallow‐water wetlands.Geophysics72(5), F211–F221.
    [Google Scholar]
  57. MartoranaR., LombardoL., MessinaN. and LuzioD.2014. Integrated geophysical survey for 3D modelling of a coastal aquifer polluted by seawater.Near Surface Geophysics12(1).
    [Google Scholar]
  58. MavkoG., MukerjiT. and DvorkinJ.1998. The Rock Physics Handbook, Cambridge University Press.
    [Google Scholar]
  59. McCormackT., GillL.W., NaughtonO. and JohnstonP.M.2014. Quantification of submarine/intertidal groundwater discharge and nutrient loading from a lowland karst catchment.Journal of Hydrology 519, Part B(0), 2318–2330.
    [Google Scholar]
  60. NguyenF., KemnaA., AntonssonA., EngesgaardP., KurasO., OgilvyR. et al., 2009. Characterization of seawater intrusion using 2D electrical imaging.Near Surface Geophysics7(5–6), 377–390.
    [Google Scholar]
  61. NiwasS., TezkanB. and IsrailM.2011. Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany.Hydrogeology Journal19(2), 307–315
    [Google Scholar]
  62. NyquistJ.E., FreyerP.A. and ToranL.2008. Stream bottom resistivity tomography to map ground water discharge.Ground Water46(4), 561–569.
    [Google Scholar]
  63. O‘ConnorP.1998. Applications of shallow geophysics to engineering and environmental site characterisation in Ireland.Proceedings of the 4th Meeting of the EEGS (European Section), Barcelona, Spain, pp. 461–464.
    [Google Scholar]
  64. O‘RourkeS. and O‘ConnorP.2009. A geographical information systems based analysis of resistivities of carboniferous lithologies in Ireland, Near Surface Geoscience 2009—15th European meeting of environmental and engineering geophysics, Dublin, Ireland.
    [Google Scholar]
  65. O‘TooleM.J.1990. A survey of some coastal zones in north Co. Clare and south Co. Galway in relation to the development of intertidal shellfish culture.Bord Iascaigh Mhara, Kinvara, Co.Galway, Ireland.
    [Google Scholar]
  66. OPW1998. An investigation of the flooding problems in the Gort‐Ardrahan area of South Galway‐Final Report.Office of Public Works, Southern Water Global, Jennings O‘Donovan Partners.
    [Google Scholar]
  67. PerriquetM.2014. Characterisation of the hydrodynamics and saltwater wedge variations in a coastal karst aquifer in response to tide and precipitation events—Bell Harbour Catchment, County Clare, Ireland.PhD thesis, National University of Ireland, Galway & University of Montpellier 2, France.
    [Google Scholar]
  68. PerriquetM., LeonardiV., HenryT. and JourdeH.2014. Saltwater wedge variation in a non‐anthropogenic coastal karst aquifer influenced by a strong tidal range (Burren, Ireland).Journal of Hydrology 519, Part B(0), 2350–2365.
    [Google Scholar]
  69. PrachtM.2004. Geology of Galway Bay: a geological description to accompany the bedrock geology 1:100,000 Map Series, Sheet 14, Galway Bay. Geological Survey of Ireland, Dublin, Ireland.
    [Google Scholar]
  70. PrimeT., BrownJ.M. and PlaterA.J.2015. Physical and economic impacts of sea‐level rise and low probability flooding events on coastal communities.PLoS One10(2), e0117030.
    [Google Scholar]
  71. ProhicE.1989. Pollution assessment in carbonate terranes. In: Hydrology of Limestone Terranes: Annotated Bibliography of Carbonate Rocks (ed P.LaMoreaux ). I.A.H. International Contributions to Hydrogeology. I.A.H., Heise, Hanover.
    [Google Scholar]
  72. RuckerD.F., NoonanG.E. and GreenwoodW.J.2011. Electrical resistivity in support of geological mapping along the Panama Canal.Engineering Geology117(1–2), 121–133.
    [Google Scholar]
  73. SchubertM., KnoellerK., RochaC. and EinsiedlF.2015. Evaluation and source attribution of freshwater contributions to Kinvarra Bay, Ireland, using 222Rn, EC and stable isotopes as natural indicators.Environmental Monitoring and Assessment187(3), 1–15.
    [Google Scholar]
  74. SCOR/LOICZ2004. Submarine groundwater discharge, management implications, measurements and effects. Prepared for International Hydrological Program (IHP), Intergovernmental Oceanographic Commission (IOC) by Scientific Committee on Oceanic Research (SCOR), Land‐Ocean Interactions in the Coastal Zone (LOICZ), IHP‐VI, Series on Groundwater No. 5, IOC Manuals and Guides No. 44.
    [Google Scholar]
  75. SimmsM.J.2003. The geomorphological history of the Burren and the Gort Lowlands. In: Caves of County Clare and South Galway (ed G.Mullan ), pp. 15–30, University of Bristol Spelaeological Society, Bristol, England.
    [Google Scholar]
  76. SimmsM.J.2005. Glacial and karst landscapes of the Gort lowlands and Burren. In: The Quaternary of central western Ireland: Field Guide, Quaternary Research Association (ed P.Coxon ), pp. 39–63, London.
    [Google Scholar]
  77. SmithA.M. and CaveR.R.2012. Influence of fresh water, nutrients and DOC in two submarine‐groundwater‐fed estuaries on the west of Ireland.Science of The Total Environment438(0), 260–270.
    [Google Scholar]
  78. SinghaK. and GorelickS.M.2005. Saline tracer visualized with three‐dimensional electrical resistivity tomography: field‐scale spatial moment analysis.Water Resources Research41(5).
    [Google Scholar]
  79. SwarzenskiP.W. and IzbickiJ.A.2009. Coastal groundwater dynamics off Santa Barbara, California:combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity.Estuarine, Coastal and Shelf Science83(1), 77–89.
    [Google Scholar]
  80. SweeneyJ., AlbanitoF., BreretonA., CaffarraA., CharltonR., DonnellyA. et al., 2008. Climate change—Refining the impacts for Ireland (2001‐CD‐C3‐M1). National University of Ireland, Maynooth, Environmental Protection Agency, Ireland.
    [Google Scholar]
  81. TaniguchiM., BurnettW.C., CableJ.E. and TurnerJ.V.2002. Investigation of submarine groundwater discharge.Hydrological Processes16(11), 2115–2129.
    [Google Scholar]
  82. TaniguchiM., IshitobiT., BurnettW.C. and WattayakornG.2007. Evaluating ground water–sea water interactions via resistivity and seepage meters.Ground Water45(6), 729–735.
    [Google Scholar]
  83. TaylorD.I.1992. Nearshore shallow gas around the U.K. coast.Continental Shelf Research12(10), 1135–1144.
    [Google Scholar]
  84. Van BeynenP. and TownsendK.2005. A Disturbance Index for karst environments.Environmental Management36(1), 101–116.
    [Google Scholar]
  85. WaxmanM.H. and SmitsL.J.M.1968. Electrical conductivities in oil‐ bearing shaly sand.Society of Petroleum Engineers Journal8, 107–122.
    [Google Scholar]
  86. WhiteW.B.1988. Geomorphology and hydrology of karst terrains. New York: Oxford University Press.
    [Google Scholar]
  87. WhiteW.B.2002. Karst hydrology: recent developments and open questions.Engineering Geology65(2–3), 85–105.
    [Google Scholar]
  88. WildenschildD., RobertsJ.J. and CarlbergE.D.2000. On the relationship between microstructure and electrical and hydraulic properties of sand‐clay mixtures.Geophysical Research Letters27(19), 3085–3088.
    [Google Scholar]
  89. WilliamsM.D. and DoyleE.2014. Dates from drowned Holocene landscapes on the western Irish seaboard.Irish Journal of Earth Sciences32.
    [Google Scholar]
  90. WilsonJ. and RochaC.2012. Regional scale assessment of submarine groundwater discharge in Ireland combining medium resolution satellite imagery and geochemical tracing techniques.Remote Sensing of Environment119(0), 21–34.
    [Google Scholar]
  91. WorthingtonS.R.H.1999. A comprehensive strategy for understanding flow in carbonate aquifers. In: Karst Modelling (eds A.N.Palmer , M.V.Palmer and I.D.Sasowsky ), pp. 30–37. Karst Waters Institute Special Publication 5.
    [Google Scholar]
  92. ZhuJ., CurrensJ.C. and DingerJ.S.2011. Challenges of using electrical resistivity method to locate karst conduits—A field case in the Inner Bluegrass Region, Kentucky.Journal of Applied Geophysics75(3), 523–530.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017062
Loading
/content/journals/10.3997/1873-0604.2017062
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error