1887
Volume 16, Issue 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Chlef City, Algeria, which is located in the Lower Cheliff Basin, is vulnerable to seismic hazards. Since there is no constrained velocity model for the Lower Cheliff Basin, particularly at greater depths, we conducted an ambient vibration investigation to map the shear‐wave velocity structure beneath the city, with the primary goal of supplementing the existing microzonation studies. Here, we inverted the Rayleigh wave ellipticity measurement curve of ambient vibrations measurements from 120 sites in Chlef City to estimate the shear‐wave velocity structure. The study area was subdivided into six zones based on similarities between the observed horizontal‐to‐vertical spectral ratio of the ambient vibrations curves. Our resultant shear‐wave velocity models show that the observed fundamental frequencies (0.3–1.6 Hz) are related to a thick layer (~800 m) of upper Miocene deposits, where on average. Generally, the Mesozoic basement shows . Moreover, the clear peaks observed at higher frequencies and only in the northwest part of the city are related to a thin layer of Quaternary deposits ().

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2018011
2018-04-01
2020-09-20
Loading full text...

Full text loading...

References

  1. ArabM., BracèneR., RoureF., ZazounR.S., MahdjoubY. and BadjiR.2015. Source rocks and related petroleum systems of the Chelif Basin, (western Tellian domain, north Algeria).Marine and Petroleum Geology64, 363–385.
    [Google Scholar]
  2. AraiH. and TokimatsuK.2000. Effects of Rayleigh and Love waves on microtremor H/V spectra.Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, January–February 2000, pp. 1–8. New Zealand Society for Earthquake Engineering Inc.
    [Google Scholar]
  3. AraiH. and TokimatsuK.2004. S‐wave velocity profiling by inversion of microtremor H/V spectrum.Bulletin of the Seismological Society of America94(1), 53–63.
    [Google Scholar]
  4. BellalemF., BounifM.A. and KoulakovI.2015. P and S waves tomo‐graphic analysis of the area of El Asnam's 1980 ms 7.3 earthquake (Algeria) from its aftershock sequence.Journal of Seismology19(1), 253–264.
    [Google Scholar]
  5. Bonnefoy‐ClaudetS., BaizeS., BonillaL.F., Berge‐ThierryC., PastenC., CamposJ. et al. 2008. Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements.Geophysical Journal International176(3), 925–937.
    [Google Scholar]
  6. Bonnefoy‐ClaudetS., CornouC., BardP.‐Y., CottonF., MoczoP., KristekJ. et al. 2006. H/V ratios: a tool for site effects evaluation. Results from 1‐D noise simulations.Geophysical Journal International167(2), 827–837.
    [Google Scholar]
  7. BooreD.M.2005. SMSIM—Fortran programs for simulating ground motions from earthquakes—A revision of OFR 96–80‐A. Open‐File Report 00‐509. United States Geological Survey, modified version, describing the program as of 15 August 2005 (Version 2.30).
    [Google Scholar]
  8. BorgesJ.F., SilvaH.G., TorresR.J.G, CaldeiraB., BezzeghoudM., FurtadoJ.A. et al. 2016. Inversion of ambient seismic noise HVSR to evaluate velocity and structural models of the Lower Tagus Basin, Portugal.Journal of Seismology20(3), 875–887.
    [Google Scholar]
  9. BragatoP.L., LaurenzanoG. and BarnabaC.2007. Automatic zonation of urban areas based on the similarity of H/V spectral ratios.Bulletin of the Seismological Society of America97(5), 1404–1412.
    [Google Scholar]
  10. CastellaroS. and MulargiaF.2009a. VS30 estimates using constrained H/V measurements.Bulletin of the Seismological Society of America99(2A), 761–773.
    [Google Scholar]
  11. CastellaroS. and MulargiaF.2009b. The effect of velocity inversions on H/V.Pure and Applied Geophysics166(4), 567–592.
    [Google Scholar]
  12. ChabaneS., MachaneD., TebboucheM.Y., KhaldaouiF., OubaicheE.H., BensalemR. et al. 2017. Ambient seismic vibration analysis and ground characterization in the vicinity of Algiers seismic zone.Arabian Journal of Geosciences10(3), 69.
    [Google Scholar]
  13. Edwards, B., MichelC., PoggiV. and FähD.2013. Determination of site amplification from regional seismicity: application to the Swiss national seismic networks.SeismologicalResearchLetters84(4), 611–621.
    [Google Scholar]
  14. DurvilleJ.L. and MeneroudJ.P.1981. Aspect géotechniques du séisme du 10 Octobre 1980.Proceedings of des Journées Scientifiques sur le Séisme d'El Asnam, October 1980.
    [Google Scholar]
  15. FähD., KindF. and GiardiniD.2001. A theoretical investigation of average H/V ratios.Geophysical Journal International145(2), 535–549.
    [Google Scholar]
  16. FähD., KindF. and GiardiniD.2003. Inversion of local S‐wave velocity structures from average H/V ratios, and their use for the estimation of site‐effects.Journal of Seismology7(4), 449–67.
    [Google Scholar]
  17. FähD., WatheletM., KristekovaM., HavenithH.‐B., EndrunB., StammG. et al. 2009. Using ellipticity information for site characterization. NERIES deliverable JRA4 D4.http://www.neries‐eu.org.
    [Google Scholar]
  18. Garcia‐JerezA., Piña‐FloresJ., Sánchez‐SesmaF.J., LuzónaF. and PertonM.2016. A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption.Computers and Geosciences97, 67–78.
    [Google Scholar]
  19. HerakM.2008. ModelHVSR—A Matlab® tool to model horizontal‐to‐vertical spectral ratio of ambient noise.Computers and Geosciences34(11), 1514–1526.
    [Google Scholar]
  20. HobigerM., BardP.‐Y., CornouC. and Le BihanN.2009. Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec).Geophysical Research Letters36(14), L14303.
    [Google Scholar]
  21. HobigerM., CornouC., WatheletM., Di GiulioG., Knapmeyer‐EndrunB., RenalierF. et al. 2013. Ground structure imaging by inversions of Rayleigh wave ellipticity: sensitivity analysis and application to European strong‐motion sites.Geophysical Journal International192(1), 207–229.
    [Google Scholar]
  22. Ibs‐vonSeht M. and WohlenbergJ.1999. Microtremor measurements used to map thickness of soft sediments.Bulletin of the Seismological Society of America89(1), 250–259.
    [Google Scholar]
  23. KamalianM, JafariM.K., GhayamghamianM.R., ShafieeA., HamzehlooH., HaghshenasE. et al. 2008. Site effect microzonation of Qom, Iran.Engineering Geology97(1–2), 63–79.
    [Google Scholar]
  24. LayadiK., SemmaneF. and Yelles‐ChaoucheA.K.2016. Site‐effects investigation in the city of Chlef (formerly El‐Asnam), Algeria, using earthquake and ambient vibration data.Bulletin of the Seismological Society of America106(5), 2185–2196.
    [Google Scholar]
  25. LermoJ. and Chavez‐GarciaF.J.1994. Site effect evaluation at Mexico City: dominant period and relative amplification from strong motion and microtremor records.Soil Dynamics and Earthquake Engineering13(6), 413–423.
    [Google Scholar]
  26. LunedeiE. and AlbarelloD.2010. Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth.Geophysical Journal International181(2), 1093–1108.
    [Google Scholar]
  27. MacauA., BenjumeaB., GabàsA., FiguerasS. and VilaM.2014. The effect of shallow quaternary deposits on the shape of the H/V spectral ratio.Surveys in Geophysics36(1), 185–208.
    [Google Scholar]
  28. MahajanA.K., MundepiA.K., ChauhanN., JasrotiaA.S., RaiN. and GachhayatT.K.2012. Active seismic and passive microtremor HVSR for assessing site effects in Jammu city, NW Himalaya, India—A case study.Journal of Applied Geophysics77, 51–62.
    [Google Scholar]
  29. MalischewskyP.G. and ScherbaumF.2004. Love's formula and H/V ‐ratio (ellipticity) of Rayleigh waves.Wave Motion40(1), 57–67.
    [Google Scholar]
  30. MattauerM.1958. Etude géologique de l'Ouarsenis oriental, Algérie.Publication du Service de la Carte Géologique de l'Algérie 17.
    [Google Scholar]
  31. MundepiA.K., Galiana‐MerinoJ.J., AsthanaA.K.L. and Rosa‐CintasS.2015. Soil characteristics in Doon Valley (north west Himalaya, India) by inversion of H/V spectral ratios from ambient noise measurements.Soil Dynamics and Earthquake Engineering77, 309–320.
    [Google Scholar]
  32. NogoshiM. and IgarashiT.1970. On the propagation characteristics of microtremor.Journal of the Seismological Society of Japan23, 264–280.
    [Google Scholar]
  33. NakamuraY.1989. A method for dynamic characteristics estimation of subsurface using ambient noise on the ground surface.Quarterly Report of RTRI30(1), 25–33.
    [Google Scholar]
  34. NakanoK., AwanoY., SuganoS., TominaK., SuitsuH. and ShindoA.1984. A survey of building damage during the El Asnam, Algeria earthquake of October 10, 1980.Proceedings of the 8th World Conference on Earthquake Engineering, San Francisco, CA, 1984, pp. 767–774.
    [Google Scholar]
  35. OuyedM. and HatzfeldD.1981. Etude séismotectonique.Proceedings of des Journées Scientifiques sur le Séisme d'El Asnam, October 1980.
    [Google Scholar]
  36. ParolaiS., RichwalskiS.M., MilkereitC. and FähD.2006. S‐wave velocity profiles for earthquake engineering purposes for the Cologne Area (Germany).Bulletin of Earthquake Engineering4(1), 65–94.
    [Google Scholar]
  37. PicottiS., FranceseR., GiorgiM., PettenatiF. and CarcioneJ.M.2017. Estimation of glacier thicknesses and basal properties using the horizontal‐to vertical component spectral ratio (HVSR) technique from passive seismic data.Journal of Glaciology63(238), 229–248.
    [Google Scholar]
  38. Rosa‐CintasS., ClaveroD., DelgadoJ., López‐CasadoC., Galiana‐MerinoJ.J. and GarridoJ.2017. Characterization of the shear wave velocity in the metropolitan area of Málaga (S Spain) using the H/V technique.Soil Dynamics and Earthquake Engineering92, 433–442.
    [Google Scholar]
  39. RPA
    RPA1999. Algerian seismic code, RPA99/2003, Ministry of Housing and Urban Planning, Algeria.
    [Google Scholar]
  40. Sánchez‐SesmaF.J.2017. Modeling and inversion of the microtremor H/V spectral ratio: physical basis behind the diffuse field approach.Earth Planets Space69(1), 92.
    [Google Scholar]
  41. Sánchez‐SesmaF.J., RodríguezM., Iturrarán‐ViverosU., LuzónF., CampilloM., MargerinL. et al. 2011. A theory for microtremor H/V spectral ratio: application for a layered medium.Geophysical Journal International186(1), 221–225.
    [Google Scholar]
  42. ScherbaumF., HinzenK.‐G. and OhrnbergerM.2003. Determination of shallow shear‐wave velocity profiles in Cologne, Germany area using ambient vibrations.Geophysical Journal International152(3), 597–612.
    [Google Scholar]
  43. SchönJ.H.2011. Elastic properties. In: Physical Properties of Rocks: A Workbook, pp. 149–243. Elsevier.
    [Google Scholar]
  44. Société Nationale de Recherche et d'Exploitation des Pétroles en ALgérie 1952. Le bassin néogène du Chélif. XIXeme Congrès de Géologique International ‐ Alger, 1952.
    [Google Scholar]
  45. StrolloA., ParolaiS., BindiD., ChiauzziL., PagliucaR., MucciarelliM. et al. 2011. Microzonation of Potenza (Southern Italy) in terms of spectral intensity ratio using joint analysis of earthquakes and ambient noise.Bulletin of Earthquake Engineering10(2), 493–516.
    [Google Scholar]
  46. SunC.‐G. and ChungC.‐K.2008. Assessment of site effects of a shallow and wide basin using geotechnical information‐based spatial characterization.Soil Dynamics and Earthquake Engineering28(12), 1028–1044.
    [Google Scholar]
  47. TalaganovK., AleksovskiD., MilutinovicZ., AmeurB., ArsovskiM., JancevskiJ. et al. 1982. Studies for elaboration of the code for repair and strengthening of damaged buildings in the region of El Asnam: engineering geology, geotechnical and geophysical characteristics of the town of El Asnam and other sites. IZIIS 82–55‐3 Report. Institute of Earthquake Engineering and Engineering Seismology, University Kiril and Metodij, Skopje, Republic of Macedonia.
    [Google Scholar]
  48. TebboucheM.Y., MachaneD., ChabaneS., OubaicheE.‐H., MezianiA.A., Ait BenamarD. et al. 2017. Imagery of the metamorphic bedrock roof of the Sahel active fault in the Sablettes (Algiers) reclaimed area by ambient vibration HVSR.Arabian Journal of Geosciences10(13), 292.
    [Google Scholar]
  49. UebayashiH., KawabeH. and KamaeK.2012. Reproduction of microseism H/V spectral features using a three‐dimensional complex topographical model of the sediment‐bedrock interface in the Osaka sedimentary basin.Geophysical Journal International189(2), 1060–1074.
    [Google Scholar]
  50. UllahI. and PradoR.L.2016. The analysis of H/V curve from different ellipticity retrieval technique for a single 3c‐station recording.Natural Hazards and Earth System Sciences.
    [Google Scholar]
  51. UllahI. and PradoR.L.2017. Soft sediment thickness and shear‐wave velocity estimation from the H/V technique up to the bedrock at meteorite impact crater site, Sao Paulo city, Brazil.Soil Dynamics and Earthquake Engineering94, 215–222.
    [Google Scholar]
  52. WatheletM.2005. Array recordings of ambient vibrations: surface‐wave inversion. PhD thesis, University of Liège, Belgium.
    [Google Scholar]
  53. WatheletM.2008. An improved neighborhood algorithm: parameter conditions and dynamic scaling.Geophysical Research Letters35(9), 1–5.
    [Google Scholar]
  54. Woodward Clyde Consultants (WCC)
    Woodward Clyde Consultants (WCC) . 1984. Seismic microzonation of Ech‐Chellif region, Algeria. Report prepared for Organisme de Contrôle Technique de la Construction (CTC), Algiers, vol. I/II/III.
    [Google Scholar]
  55. WooleryE. and StreetR.2002. Quaternary fault reactivation in the fluorspar area fault complex of western Kentucky: evidence from shallow SH‐wave reflection profiles.SeismologicalResearchLetters73(5), 628–639.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2018011
Loading
/content/journals/10.3997/1873-0604.2018011
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error