- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 14, Issue 4, 2002
Basin Research - Volume 14, Issue 4, 2002
Volume 14, Issue 4, 2002
-
-
Frontal accretion and thrust wedge evolution under very oblique plate convergence: Fiordland Basin, New Zealand
Authors P. M. Barnes, B. Davy, R. Sutherland and J. DelteilABSTRACTA thrust wedge with unusual geometry has developed under very oblique (50–60°) convergence between the Pacific and Australian Plates, along the 240‐km length of the Fiordland margin, New Zealand. The narrow (25 km‐wide) wedge comprises three overlapping components, lying west of the offshore section of the Alpine Fault, and straddles a change of > 30° in the regional strike of the plate boundary. Swath bathymetry, marine seismic reflection profiles, and dated samples together reveal the stratigraphy, structure, and evolution of the wedge and the underthrusting, continental, Caswell High (Australian Plate).
Lateral variations in the composition and structure of the accretionary wedge, and the depth of the décollement thrust, result partly from variations in crustal structure and basement relief of the underthrust plate, and from associated variations in the thickness of turbidites available for frontal accretion. In the southern Fiordland Basin the underthrust plate is undergoing flexural uplift and extension, and a thick turbidite section is available for accretion. Along‐strike, a structurally elevated portion of the underthrust plate is very obliquely colliding with the central part of the accretionary wedge, the turbidite section available for accretion is condensed, and structural inversion occurs in the underthrust plate.
Growth of the thrust wedge is inferred to have commenced in the Pliocene prior to 3 ± 1 Ma, but much of the wedge developed in the Quaternary. The spatial distribution of thrusting has varied through time, with most late Quaternary shortening occurring on structures within 10 km of the right‐stepping deformation front. Estimates of the magnitude and rates of deformation indicate that the wedge accommodates a significant component of the oblique convergence between the Pacific and Australian Plates. Shortening of up to 7.3 ± 1.4 km and 9.1 ± 1.8 km within the southern and central parts of the wedge, respectively, represent about 5–15% of the total 70–140 km of shortening predicted across the plate boundary since 6.4 Ma, and about 10–30% since 3 Ma. Late Quaternary shortening rates of the order of 1–5 mm yr−1, estimated across both the northern and southern parts of the wedge, represent about 10–50 and 5–21% of the total NUVEL‐1 A shortening across the plate boundary at these respective latitudes, implying that most shortening is occurring onshore. Furthermore, possible oblique‐slip thrusting within the wedge may be accommodating boundary‐parallel displacement of 0–6 mm yr−1, representing 0–17% of the total predicted within the plate boundary.
-
-
-
A fossilized Opal A to Opal C/T transformation on the northeast Atlantic margin: support for a significantly elevated Palaeogeothermal gradient during the Neogene?
Authors R. J. Davies and J. CartwrightABSTRACTRock samples – collected from a recent deep‐water exploration well drilled in the Faeroe‐Shetland Channel, northwest of the UK – confirm that a distinctive high‐amplitude seismic reflector that cross‐cuts the Upper Palaeogene and Neogene succession and covers an area of 10 000 km2 is an example of a fossilized Opal A to Opal C/T (Cristobalite/Tridymite) transition. Analysis of these rock fragments tied to an extensive two‐dimensional and three‐dimensional seismic database constrains the time at which the boundary was fossilized and in addition reveals the unusual geometrical characteristics of a relict bottom‐simulating reflector.
The diagenetic transformation of biogenic silica (Opal A) to Opal C/T is predominantly temperature‐controlled and requires sediments that contain biogenic silica. The reflector (termed as Horizon E) probably initially represented a biosiliceous ooze or a siltstone that contained a component of biogenic silica that underwent transformation as the diagenetic front migrated upsection during burial. The parallelism it shows with a shallower early Pliocene reflector and its apparent upsection migration during a compressional episode in the basin indicate that it was active during the middle and late Miocene and ceased activity during the early Pliocene when there was between 200 and 400 m of overburden. The present‐day burial depth of the boundary is ca. 700 m and the temperature at the inactive diagenetic front at the well location is 24 °C. Given these temperature and depth constraints, we hypothesize that even if this is an example of a relatively low‐temperature Opal A to Opal C/T transformation, a temporarily elevated geothermal gradient of ca. 60 °C km−1 would have been required to initiate and arrest upsection migration of the boundary during the middle and late Miocene. Factors such as climatic deterioration and the onset of cold deep‐water circulation are likely to only have had a contributory role in arresting the upward migration of the boundary.
-
-
-
Seismic reflection imaging of active offshore faults in the Gulf of Corinth: their seismotectonic significance
Authors A. Stefatos, G. Papatheodorou, G. Ferentinos, M. Leeder and R. CollierABSTRACTHigh resolution seismic reflection surveys over one of the most active and rapidly extending regions in the world, the Gulf of Corinth, have revealed that the gulf is a complex asymmetric graben whose geometry varies significantly along its length. A detailed map of the offshore faults in the gulf shows that a major fault system of nine distinct faults limits the basin to the south. The northern Gulf appears to be undergoing regional subsidence and is affected by an antithetic major fault system consisting of eight faults. All these major faults have been active during the Quaternary. Uplifted coastlines along their footwalls, growth fault patterns and thickening of sediment strata toward the fault planes indicate that some of these offshore faults on both sides of the graben are active up to present.
Our data ground‐truth recent models and provides actual observations of the distribution of variable deformation rates in the Gulf of Corinth. Furthermore they suggest that the offshore faults should be taken into consideration in explaining the high extension rates and the uplift scenarios of the northern Peloponnesos coast. The observed coastal uplift appears to be the result of the cumulative effect of deformation accommodated by more than one fault and therefore, average uplift rates deduced from raised fossil shorelines, should be treated with caution when used to infer individual fault slip rates.
Seismic reflection profiling is a vital tool in assessing seismic hazard and basin‐formation in areas of active extension.
-
-
-
Tectono‐climatic evolution of a Neogene intramontane basin (Late Miocene Carboneras subbasin, southeast Spain): revelations from basin mapping and biofacies analysis
Authors T. C. Brachert, U. M. R. Krautworst and O. M. StueckradABSTRACTExceptional 3‐D exposures of fault blocks forming a 5 km × 10 km clastic sediment‐starved, marine basin (Carboneras subbasin, southeast Spain) allow a test of the response of carbonate sequence stratigraphic architectures to climatic and tectonic forcing. Temperate and tropical climatic periods recorded in biofacies serve as a chronostratigraphic framework to reconstruct the status of the basin within three time‐slices (late Tortonian–early Messinian, late Messinian, Pliocene). Structural maps and isopach maps trace out the distribution of fault blocks, faults, and over time, their relative motions, propagational patterns and life times, which demonstrate a changing layout of the basin because of a rotation of the regional transtensional stress field. Progradation of early Messinian reefal systems was perpendicular to the master faults of the blocks, which were draped by condensed fore‐slope sediments. The hangingwall basins coincided with the toe‐of‐slope of the reef systems. The main phase of block faulting during the late Tortonian and earliest Messinian influenced the palaeogeography until the late Pliocene (cumulative throw < 150–240 m), whereas displacements along block bounding faults, which moved into the hangingwall, died out over time. An associated shift of the depocentres of calciturbidites, slump masses and fault scarp degradation breccias reflects 500–700 m of fault propagation into the hangingwall. The shallow‐water systems of the footwall areas were repeatedly subject to emergence and deep peripheral erosion, which imply slow net relative uplift of the footwall. In the dip‐slope settings, erosional truncations of tilted proximal deposits prevail, which indicate rotational relative uplift. Block movements were on the order of magnitude of third order sea‐level fluctuations during the late Tortonian and earliest Messinian. We suggest that this might be the reason for the common presence of offlapping geometries in early Messinian reef systems of the Betic Cordilleras. During the late Pliocene, uplift rates fell below third order rates of sea‐level variations. However, at this stage, the basin was uplifted too far to be inundated by the sea again. The evolution of the basin may serve as a model for many other extensional basins around the world.
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)