- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 15, Issue 4, 2003
Basin Research - Volume 15, Issue 4, 2003
Volume 15, Issue 4, 2003
-
-
Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina
Authors Edward R. Sobel and Manfred R. StreckerAbstractDeciphering the evolution of mountain belts requires information on the temporal history of both topographic growth and erosion. The exhumation rate of a mountain range undergoing shortening is related to the erodability of the uplifting range as well as the efficiency of erosion, which partly depends on the available precipitation. Young, rapidly deposited sediments have low thermal conductivity and are readily eroded, in contrast to underlying resistant basement rocks that have a higher thermal conductivity. Apatite fission‐track thermochronology can quantify cooling; thermal models constrain the relationship between this cooling and exhumation. By utilizing geological relations for a datum, we can examine the evolution of rock uplift, surface uplift and exhumation. In the northern Sierras Pampeanas of Argentina, a young sedimentary basin that overlay resistant crystalline basement prior to rapid exhumation provides an ideal setting to examine the effect of contrasting thermal and erosional regimes. There, tectonically active reverse‐fault‐bounded blocks partly preserve a basement peneplain at elevations in excess of 4500 m. Prior to exhumation, the two study areas were covered by 1000 and 1600 m of recently deposited sediments; this sequence begins with shallow marine deposits immediately overlying the regional erosion surface. Apatite fission‐track data were obtained from vertical transects in the Calchaquíes and Aconquija ranges. At Cumbres Calchaquíes, erosion leading to the development of the peneplain commenced in the Cretaceous, probably as a result of rift‐shoulder uplift. In contrast, Sierra Aconquija cooled rapidly between 5.5 and 4.5 Myr. At the onset of this rapid exhumation, the sediment was quickly removed, causing fast cooling, but relatively slow rates of surface uplift. Syntectonic conglomerates were produced when faulting exposed resistant bedrock; this change in rock erodability led to enhanced surface uplift rates, but decreased exhumation rates. The creation of an orographic barrier after the range had attained sufficient elevation further decreased exhumation rates and increased surface uplift rates. Differences in the magnitude of exhumation at the two transects are related to both differences in the thickness of the sedimentary basin prior to exhumation and differences in the effective precipitation due to an orographic barrier in the foreland and hence differences in the magnitude of headward erosion.
-
-
-
Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region
Authors A. T. Lin, A. B. Watts and S. P. HesselboAbstractSeismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene–Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny.
Seismic data, together with the subsidence analysis of deep wells, show that during rifting (∼58–37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, β, in the range ∼1.4–1.6. By ∼37 Ma, the focus of rifting shifted to the present‐day continent–ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ∼30 Ma. Intense rifting during the rift–drift transition (∼37–30 Ma) may have induced a transient, small‐scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection.
Oligocene uplift was followed by rapid, early post‐breakup subsidence (∼30–18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ∼30–21 Ma. This extension in the outer margin (β∼1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ∼21–12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ∼12.5 Ma that rifting resumed, being especially active in the Tainan Basin (β∼1.1). Rifting ceased at ∼6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc.
The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ∼58–30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ∼30–21 and ∼12.5–6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen.
-
-
-
Normal fault growth and early syn‐rift sedimentology and sequence stratigraphy: Thal Fault, Suez Rift, Egypt
Authors Mike J. Young, Rob. L. Gawthorpe and Ian R. SharpAbstractThis paper investigates the tectono‐stratigraphic development of a major, segmented rift border fault (Thal Fault) during ca. 6 Myr of initial rifting in the Suez Rift, Egypt. The Thal Fault is interpreted to have evolved by the progressive linkage of at least four fault segments. We focus on two contrasting structural settings in its hangingwall: Gushea, towards the northern tip of the fault, and Musaba Salaama, ca. 20 km along‐strike to the south, towards the centre of the fault. The early syn‐rift stratigraphic succession passes upwards from continental facies, through a condensed marginal marine shell‐rich facies, into fully marine shoreface sandstone and offshore mudstone. Regionally correlatable stratal surfaces within this succession define time‐equivalent stratal units that exhibit considerable along‐strike variability in thickness and facies architecture. During the initial ca. 6 Myr of rifting, the thickest stratigraphy developed towards the centre of the array of fault segments that subsequently hard linked to form the Thal Fault. Thus, a displacement gradient existed between fault segments at the centre and tip of the fault array, suggesting that the fault segments interacted, and a fixed length was established for the fault array, at an early stage in rifting. Towards the centre of the Thal Fault the early syn‐rift succession shows pronounced thickening away from the fault and towards a series of intra‐block antithetic faults that were active for up to ca. 6 Myr. This indicates that a large proportion of fault‐controlled subsidence during the initial ca. 6 Myr of rifting occurred in the hangingwalls of antithetic intra‐block faults, and not the present‐day Thal Fault. The antithetic faults progressively switched off during rifting such that after ca. 6 Myr of rifting, fault‐activity had localised on the Thal Fault enabling it to accrue to the present‐day high level of displacement. Aspects of the development of the Thal Fault appear to be in contrast to many models of fault evolution that predict large‐displacement rift‐climax faults to have always had the greatest displacement during fault population evolution. This study has implications for tectono‐stratigraphic development during early rift basin evolution. In particular, we stress that caution must be taken when relating final rift‐climax fault structure to the early tectono‐stratigraphy, as these may differ considerably.
-
-
-
Distinguishing fault reactivation from flexural deformation in the distal stratigraphy of the Peripheral Blountian Foreland Basin, southern Appalachians, USA
Authors Germán Bayona and William A. ThomasAbstractReactivation of intraplate structures and weak zones within the foreland lithosphere disrupt the modelled geometry and pattern of migration of the flexural wave in foreland basins. In the southern Appalachians (USA), the Middle Ordovician unconformity, irregular Middle Ordovician distal foreland deposition and backstepping of Middle–lower Upper Ordovician carbonate strata have been related to migration of the flexural wave. However, integration of stratigraphy, tectonic subsidence history and composition of palinspastically restored distal foreland strata, using a map of subsurface basement structures as reference, allows us to distinguish an early event of inversion from two events of flexural migration. Sections restoring at very short distances outside the boundaries of a former basement graben have the youngest passive‐margin strata preserved beneath Middle Ordovician (∼466 Ma) peritidal to deep lagoonal carbonates with gravel‐size chert clasts. In contrast, sections restoring inside the graben record >470 m of truncation of pre‐Middle Ordovician passive‐margin strata, late onset of deposition (∼456 Ma), and subaerial features in carbonate and siliciclastic strata. The lacuna geometry and early patterns of distal foreland uplift and carbonate deposition indicate that inversion of a basement graben in response to Middle Ordovician convergence, rather than a migrating or semi‐fixed forebulge, was the primary control on the early evolution of the distal foreland. Drowning of the carbonate platform in more proximal settings, northeastward onset of deposition on upthrown blocks, and thick accumulation of carbonates in downthrown blocks record northwestward and northeastward flexural wave migration at the Middle–Late Ordovician boundary. In early Late Ordovician, the overall shoaling of carbonate and siliciclastic depocentres and the rise of tectonic subsidence curves indicate hinterlandward migration of flexural uplift. Both events of flexural migration were accompanied by influx of volcanic ash and synorogenic sediments.
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)