- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 24, Issue 2, 2012
Basin Research - Volume 24, Issue 2, 2012
Volume 24, Issue 2, 2012
-
-
A two‐step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis
Authors François Bache, Speranta‐Maria Popescu, Marina Rabineau, Christian Gorini, Jean‐Pierre Suc, Georges Clauzon, Jean‐Louis Olivet, Jean‐Loup Rubino, Mihaela Carmen Melinte‐Dobrinescu, Ferran Estrada, Laurent Londeix, Rolando Armijo, Bertrand Meyer, Laurent Jolivet, Gwénaël Jouannic, Estelle Leroux, Daniel Aslanian, Antonio Tadeu Dos Reis, Ludovic Mocochain, Nikola Dumurdžanov, Ivan Zagorchev, Vesna Lesić, Dragana Tomić, M. Namık Çağatay, Jean‐Pierre Brun, Dimitrios Sokoutis, Istvan Csato, Gülsen Ucarkus and Ziyadin ÇakırAbstractThe Messinian Salinity Crisis is well known to have resulted from a significant drop of the Mediterranean sea level. Considering both onshore and offshore observations, the subsequent reflooding is generally thought to have been very sudden. We present here offshore seismic evidence from the Gulf of Lions and re‐visited onshore data from Italy and Turkey that lead to a new concept of a two‐step reflooding of the Mediterranean Basin after the Messinian Salinity Crisis. The refilling was first moderate and relatively slow accompanied by transgressive ravinement, and later on very rapid, preserving the subaerial Messinian Erosional Surface. The amplitude of these two successive rises of sea level has been estimated at ≤500 m for the first rise and 600–900 m for the second rise. Evaporites from the central Mediterranean basins appear to have been deposited principally at the beginning of the first step of reflooding. After the second step, which preceeded the Zanclean Global Stratotype Section and Point, successive connections with the Paratethyan Dacic Basin, then the Adriatic foredeep, and finally the Euxinian Basin occurred, as a consequence of the continued global rise in sea level. A complex morphology with sills and sub‐basins led to diachronous events such as the so‐called ‘Lago Mare’.This study helps to distinguish events that were synchronous over the entire Mediterranean realm, such as the two‐step reflooding, from those that were more local and diachronous. In addition, the shoreline that marks the transition between these two steps of reflooding in the Provence Basin provides a remarkable palaeogeographical marker for subsidence studies.
-
-
-
A synthesis of Cenozoic sedimentation in the North Sea
Authors Ingrid Anell, Hans Thybo and Erik RasmussenAbstractThe North Sea Basin contains an almost complete record of Cenozoic sedimentation, separated by clear regional unconformities. The changes in sediment characteristics, rate and source, and expression of the unconformities reflect the tectonic, eustatic and climatic changes that the North Sea and its margins have undergone. While the North Sea has been mapped locally, we present the first regional mapping of the Cenozoic sedimentary strata. Our study provides a new regional sub‐division of the main seismic units in the North Sea together with maps of depocentres, influx direction and source areas. Our study provides a regional synthesis of sedimentation based on a comprehensive interpretation of a regionally covering reflection seismic data set. We relate observations of sediment characteristics and unconformities to the geological evolution. The timing, regional expression and stratigraphic characteristics of many unconformities indicate that they were generated by eustatic sea‐level fall, often in conjunction with other processes. Early Cenozoic unconformities, however, relate to tectonism associated with the opening of the North Atlantic. From observation on a regional scale, we infer that the sediment influx into the North Sea during the Cenozoic is more complex than previously suggested clockwise rotation from early northwestern to late southern sources. The Shetland Platform supplied sediment continuously, although at varying rates, until the latest Cenozoic. Sedimentation around Norway changed from early Cenozoic influx from the southwestern margin, to almost exclusively from the southern margin in the Oligocene and from all of southern Norway in the latest Cenozoic. Thick Eocene deposits in the Central Graben are sourced mainly from a western and a likely southern source, indicating that prominent influx from the south did not only occur from the mid‐Miocene onwards. We infer a new age for the increased progradational sediment influx in the Pleistocene of 2.5 Ma, coeval with Fennoscandian glaciation.
-
-
-
The linkage between fault throw and footwall scarp erosion patterns: an example from the Bremstein Fault Complex, offshore Mid‐Norway
AbstractStudies of normal fault systems in modern extensional regimes (e.g. Basin and Range), and in exhumed, ancient rift basins (e.g. Gulf of Suez Rift) have shown a link between the evolution of fault‐related footwall topography and associated erosional drainage systems. In this study, we use 3D seismic reflection data to image the footwall crest of a gravity‐driven fault system developed during late Middle Jurassic to Early Cretaceous rifting on the Halten Terrace, offshore Mid‐Norway. This 22‐km‐long fault system lacks significant footwall uplift, with hangingwall subsidence accommodating throw accumulation on the fault system. Significant erosion has occurred along the length of the footwall crest and is defined by 96 catchments characterized by erosional channels. These erosional channels consist of small, linear systems up to 750 m long located along the front of the fault footwall. Larger, dendritic channel systems extend further back (up to 3 km normal to fault strike) into the footwall. These channels are up to 7 km long, up to 50 m deep and up to 1 km wide. Fault throw varies along strike, with greatest throw in the centre of the fault decreasing towards the fault tips; localized throw minima are interpreted to represent segment linkage points, which were breached as the fault grew. Comparison of the catchment location to the throw distribution shows that the largest catchments are in the centre of the fault and decrease in size to the fault tips. There is no link between the location of the breached segment linkage points and the location and size of the footwall catchments, suggesting that the first‐order control on footwall erosion patterns is the overall fault‐throw distribution.
-
-
-
Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment‐fan system
Authors Sébastien Rohais, Stéphane Bonnet and Rémi EschardAbstractThis article deals with the stratigraphic record of a climatic or tectonic perturbation of an experimental coupled catchment‐fan system. Following Bonnet & Crave's results (2003), which suggest that it is possible to differentiate between climatic or tectonic causes of surface uplift of an erosional topography from the record of sediment flux output, we design a new experimental device to test this proposition in the sedimentary signal. This device allows the study of a coupled erosion–sedimentation system at the laboratory scale for given and changing uplift and rainfall rates. On the basis of experimental results, we propose a methodology to study alluvial fan architecture from large‐scale geometries to stacking pattern and sequence analysis. In these experiments, the erosional perturbation resulting from climate or tectonic forcing induces a typical dynamic in terms of both sediment supply and the ratio between the sediment and water supply, which controls the transport capacity. The four possible forcings (rainfall rate and uplift rate increase or decrease, respectively) then result in unique dynamics of the combined parameters such as the fan slope, apex aggradation, mean sedimentation rate, grain size distribution, bed thickness and frequency and facies stacking. We first analyse large‐scale geometries (onlap, toplap, downlap or truncation) and then fine‐scale sedimentological features (fining, thinning, coarsening, thickening) in order to discriminate the nature of the forcing. This conceptual model could be adapted to real world alluvial fans in order to recognize and separate the driving mechanisms from each other.
-
-
-
The Pleistocene tectono‐‐sedimentary evolution of the Apenninic foreland basin between Trigno and Fortore rivers (Southern Italy) through a sequence‐stratigraphic perspective
Authors V. Bracone, A. Amorosi, P. P. C. Aucelli, C. M. Rosskopf, F. Scarciglia, V. Di Donato and P. EspositoAbstractA basin‐scale, integrated approach, including sedimentological, geomorphological and soil data, enables the reliable reconstruction of the infilling history of the southern Apenninic foredeep, with its subsequent inclusion in the wedge‐top of the foreland basin system. An example is shown from the Molise‐Apulian Apennines (Southern Italy), between Trigno and Fortore rivers, where the Pleistocene tectono‐sedimentary evolution of the basin is framed into a sequence‐stratigraphic scheme. Specifically, within the traditional subdivision into Quaternary marine (Qm) and Quaternary continental (Qc) depositional cycles, five third‐order depositional sequences (Qm1, Qm2, Qc1, Qc2 and Qc3) are identified based on recognition of four major stratigraphic discontinuities. The lower sequence boundaries are represented by angular unconformities or abrupt facies shifts and are generally associated with distinctive pedological and geomorphological features. Three paleosols, observed at top of depositional sequences Qm2, Qc1 and Qc2, represent pedostratigraphic markers that can be tracked basinwide. The geomorphological response to major tectono‐sedimentary events is marked by a series of paleosurfaces with erosional, depositional and complex characteristics. Detailed investigation of the relationships between stratigraphic architecture and development of unconformities, paleosols and paleosurfaces suggests that the four sequence boundaries were formed in response to four geomorphological phases/tectonic events which affected the basin during the Quaternary. The first three tectonic events (Lower‐Middle Pleistocene), marking the lower boundaries of sequences Qm2, Qc1 and Qc2, respectively, are interpreted to be related to the tectonic regime that characterized the last phase of thrusting recorded in the Southern Apennines. In contrast, sequence Qc3 does not display evidence of thrust tectonics and accumulated as a result of a phase of regional uplift starting with the Middle Pleistocene.
-
-
-
Numerical modelling of the hydrocarbon generation of Tertiary source rocks intruded by doleritic sills in the Zhanhua depression, Bohai Bay Basin, China
Authors Kai Wang, Xiancai Lu, Meng Chen, Yemu Ma, Kuiyuan Liu, Lianqi Liu, Xiaozhao Li and Wenxuan HuAbstractAn igneous hydrocarbon reservoir had been found in the Zhanhua depression, Bohai Bay Basin, eastern China. Two doleritic sills successively intruded into the immature source rock of the third member of the Shahejie Formation (Es3). The heat released from the magma changed the mineral composition of wall rocks and accelerated the maturity of organic matter. Thin hornfels and carbargilite zones were found next to the sills. The vitrinite reflectances (%Ro) of these heated wall rocks increased to at least 1.4% near the contacts (<50 m), and accumulation of oil was found in the hornfels zone and dolerite bodies. With the aim of understanding the influence of the sills on the hydrocarbon generation process, a complex heat conduction model was used to simulate the thermal history of the organic‐rich wall rocks, in which both the latent heat of crystallization of intrusions and vapourization heat of pore water in wall rocks were considered. The simulation results suggested that the cooling of each sill continued for about 0.1 Ma after its emplacement and the temperature of wall rocks was considerably raised. The peak temperature (Tpeak) that wall rocks experienced can reach 460–650°C in the region of 10 m away from the contacts. The thermal model was qualitatively verified by comparing the experimental data of vitrinite reflectances and mineral geothermometers of the wall rocks with the simulation results. Furthermore, we modelled the hydrocarbon generation of the source rocks based on the simulated thermal history. In the region of about 100 m from the contacts, the organic matter was heated and partially transformed into hydrocarbon within only a few 1000 years, which was significantly faster than the normal burial generation process.
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)