- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 25, Issue 4, 2013
Basin Research - Volume 25, Issue 4, 2013
Volume 25, Issue 4, 2013
-
-
Strike‐slip tectonics and basin inversion in the Western Mediterranean: the Post‐Messinian evolution of the Alboran Sea
Authors P. Martínez‐García, M. Comas, J. I. Soto, L. Lonergan and A. B. WattsAbstractA comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.
-
-
-
Stratigraphy and 40Ar/39Ar geochronology of the Santa Rosa basin, Baja California: Dynamic evolution of a constrictional rift basin during oblique extension in the Gulf of California
Authors C. Seiler, M.C. Quigley, J.M. Fletcher, D. Phillips, A.J.W. Gleadow and B.P. KohnAbstractThe Santa Rosa basin of northeastern Baja California is one of several transtensional basins that formed during Neogene oblique opening of the Gulf of California. The basin comprises Late Miocene to Pleistocene sedimentary and volcanic strata that define an asymmetric half‐graben above the Santa Rosa detachment, a low‐angle normal fault with ca. 4–5 km of SE‐directed displacement. Stratigraphic analysis reveals systematic basin‐scale facies variations both parallel and across the basin. The basin‐fill exhibits an overall fining‐upward cycle, from conglomerate and breccia at the base to alternating sandstone‐mudstone in the depocentre, which interfingers with the fault‐scarp facies of the detachment. Sediment dispersal was transverse‐dominated and occurred through coalescing alluvial fans from the immediate hanging wall and/or footwall of the detachment. Different stratigraphic sections reveal important lateral facies variations that correlate with major corrugations of the detachment fault. The latter represent extension‐parallel folds that formed largely in response to the ca. N‐S constrictional strain regime of the transtensional plate boundary. The upward vertical deflection associated with antiformal folding dampened subsidence in the northeastern Santa Rosa basin, and resulted in steep topographic gradients with a high influx of coarse conglomerate here. By contrast, the downward motion in the synform hinge resulted in increased subsidence, and led to a southwestward migration of the depocentre with time. Thus, the Santa Rosa basin represents a new type of transtensional rift basin in which oblique extension is partitioned between diffuse constriction and discrete normal faulting. 40Ar/39Ar geochronology of intercalated volcanic rocks suggests that transtensional deformation began during the Late Miocene, between 9.36 ± 0.14 Ma and 6.78 ± 0.12 Ma, and confirms previous results from low‐temperature thermochronology (Seiler et al., 2011). Two other volcanic units that appear to be part of a conformable syn‐rift sequence are, in fact, duplicates of pre‐rift volcanics and represent allochthonous, gravity‐driven slide blocks that originated from the hanging wall.
-
-
-
Direct dating of thick‐ and thin‐skin thrusts in the Peruvian Subandean zone through apatite (U–Th)/He and fission track thermochronometry
AbstractAlthough the structure of the central Peruvian Subandean zone is well defined, the timing of thrust‐related exhumation and Cenozoic sedimentation remain poorly constrained. In this study, we report new apatite (U–Th)/He (AHe) and fission track (AFT) ages from thrust‐belt and foreland strata along three published balanced cross sections. AHe data from the northern, thick‐skinned domain (i.e. Shira Mountain, Otishi Cordillera and Ucayali Basin) show young AHe ages (ranging from 2.6 ± 0.2 to 13.1 ± 0.8 Ma) compared with AFT ages (ranging from 101 ± 5 to 133 ± 11 Ma). In the southern Camisea Basin, where deformation is mainly thin‐skinned, AHe and AFT ages have been both reset and show young cooling ages (3.7 ± 0.8 Ma and 8 ± 2 Ma respectively). Using low‐temperature thermochronology data and the latest fission track annealing and He diffusion codes, the thermal history of the study area has been reconstructed using inverse modelling. This history includes two steps of erosion: Early Cretaceous and late Neogene, but only Neogene sedimentation and exhumation varies in the different sectors of the study area. From a methodological point of view, large AHe data dispersion point to the need for refinement of AHe damage and annealing models. The influence of grain chemistry on damage annealing, multiple age components and the possibility of fission tracks as traps for He need further consideration. For the central Peruvian Subandes, AHe and AFT ages combined with balanced cross sections emphasize the dominant control of Paleozoic inheritance rather than climate on Cenozoic infilling and exhumation histories. Finally, our data provide the first field example of how thick‐skinned thrust‐related deformation and exhumation in the Subandes can be directly dated through AHe thermochronology.
-
-
-
3D numerical modelling of graben interaction and linkage: a case study of the Canyonlands grabens, Utah
Authors Vaneeda Allken, Ritske S. Huismans, Haakon Fossen and Cedric ThieulotAbstractGraben systems in extensional settings tend to be segmented with evidence of segment interaction. To gain a better understanding of the evolution of structures formed during graben growth and interaction, we here study the Grabens area of Canyonlands National Park, Utah, where a wide range of such structures is well exposed. With the aid of 3D numerical models, we attempt to reproduce structures observed in that region and to understand controls on the structural style of graben interaction by varying the spacing between pre‐existing structures. The sensitivity of the system to the thickness of the salt layer is also tested. Four distinct types of structures are observed when the spacing between inherited weak zones is varied: (1) grabens connecting in a relay zone divided by a narrow central horst; (2) graben segments interacting via a secondary stepover graben; (3) grabens propagating alongside each other with limited segment interaction; and (4) an abandoned graben segment in a system of multiple competing grabens. The presence of a basal salt layer (Paradox Member) promotes efficient graben propagation. A comparison between the observed structures and the numerical model results indicates that the detachment salt layer is relatively thin in the study area.
-
-
-
Tectono‐sedimentary Evolution of Early Pennsylvanian Alluvial Systems at the Onset of the Alleghanian Orogeny, Pocahontas Basin, Virginia
Authors R.P. Grimm, K. Eriksson and J. CarbaughAbstractForeland basin strata provide an opportunity to review the depositional response of alluvial systems to unsteady tectonic load variations at convergent plate margins. The lower Breathitt Group of the Pocahontas Basin, a sub‐basin of the Central Appalachian Basin, in Virginia preserves an Early Pennsylvanian record of sedimentation during initial foreland basin subsidence of the Alleghanian orogeny. Utilizing fluvial facies distributions and long‐term stacking patterns within the context of an ancient, marginal‐marine foreland basin provides stratigraphic evidence to disentangle a recurring, low‐frequency residual tectonic signature from high‐frequency glacioeustatic events. Results from basin‐wide facies analysis, corroborated with petrography and detrital zircon geochronology, support a two end‐member depositional system of coexisting transverse and longitudinal alluvial systems infilling the foredeep during eustatic lowstands. Provenance data suggest that sediment was derived from low‐grade metamorphic Grenvillian‐Avalonian terranes and recycling of older Palaeozoic sedimentary rocks uplifted as part of the Alleghanian orogen and Archean‐Superior‐Province. Immature sediments, including lithic sandstone bodies, were deposited within a SE‐NW oriented transverse drainage system. Quartzarenites were deposited within a strike‐parallel NE‐SW oriented axial drainage, forming elongate belts along the western basin margin. These mature quartzarenites were deposited within a braided fluvial system that originated from a northerly cratonic source area. Integrating subsurface and sandstone provenance data indicates significant, repeated palaeogeographical shifts in alluvial facies distribution. Distinct wedges comprising composite sequences are bounded by successive shifts in alluvial facies and define three low‐frequency tectonic accommodation cycles. The proposed tectonic accommodation cycles provide an explanation for the recognized low‐frequency composite sequences, defining short‐term episodes of unsteady westward migration of the flexural Appalachian Basin and constrain the relative timing of deformation events during cratonward progression of the Alleghanian orogenic wedge.
-
-
-
Dynamics of giant mass transport in deep submarine environments: the Matakaoa Debris Flow, New Zealand
Authors C. Joanne, G. Lamarche and J.‐Y. CollotAbstractThe Matakaoa Debris Flow (MDF) is a 200‐km‐long mass‐transport deposit resulting from the failure of the Matakaoa continental margin, northeast New Zealand, ca. 38–100 ky ago. In this study, high‐quality bathymetric and seismic reflection data are used to identify the morpho‐structural characters that reflect the kinematics of the MDF, as well as its interactions with basin sediments. We demonstrate how the transport energy, together with the local topography led to the present geometry and complex structure of the MDF deposits. The remarkable transport energy of the MDF is demonstrated by its dynamic impact on adjacent sedimentary series, including erosion of the substratum, shearing and compressional deformation. In the proximal zone of transport, momentous substratum erosion, demonstrated by giant tool marks and truncated sediments at the base of the debrite, triggered the excavation of a large volume (>200 km3) of basin sediments. The size of transported blocks (up to 3‐km long) is used to estimate the matrix yield strength in an early stage of transport. In the distal zone of transport, 100 km north of the source, seismic profiles show the propagation of thrust structures from the MDF into adjacent basin sediments. This study highlights that the remarkable volume of 2000 km3 of deposits partly resulted from the propagation of compressive structures within the basin sedimentary series to the front of the debrite.
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)