- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 26, Issue 3, 2014
Basin Research - Volume 26, Issue 3, 2014
Volume 26, Issue 3, 2014
-
-
The role of climate variation in delta architecture: lessons from analogue modelling
Authors J. F. Bijkerk, J. ten Veen, G. Postma, D. Mikeš, W. van Strien and J. de VriesAbstractSequence‐stratigraphic models for fourth to sixth order, glacio‐eustatic sequences based only on relative sea‐level variations result in simplified and potentially false interpretations. Glacio‐eustatic sea‐level variations form only one aspect of cyclic climate variation; other aspects, such as variations in fluvial water discharge, vegetation cover, weathering and sediment supply can lead to variable sediment yield, thus adding complexity to sequence‐stratigraphic patterns normally attributed to sea‐level variations. Analogue flume models show a significant impact of water discharge on the timing and character of sequence boundaries, and on changes in the relative importance of systems tracts, as expressed in sediment volumes. Four deltas, generated under the influence of an identical sea‐level curve, and affected by different water‐discharge cycles were generated in the Eurotank facility: (1) constant discharge; (2) high‐frequency discharge variations (HFD); (3) discharge leading sea level by a quarter phase; (4) discharge lagging sea level by a quarter phase. HFD shift the parasequence stacking pattern consistently but do not alter large‐scale delta architecture. Water‐discharge changes that lead sea‐level changes result in high sediment yield during sea‐level rise and in the poor development of maximum flooding surfaces. Delta‐front erosion during sea‐level fall is expressed by multiple, small channels related to upstream avulsions, and does not result in an incised valley that efficiently routs sediment to the shelf edge. When water‐discharge changes lag sea‐level changes, sediment yield is high during falling sea level and results in rapid progradation during forced regression. Erosion from incised valleys is strong on the proximal delta top and dissipates towards the delta front. The combination of high discharge and sea‐level fall provides the most efficient mode of valley incision and sediment transport to the shelf edge. During sea‐level rise, low water discharge results in sediment starvation and well‐developed maximum flooding surfaces. Water‐discharge variations thus alter sequence‐stratigraphic patterns and provide an alternative explanation to the amplitude of sea‐level fall for generating either type 1 or 2 erosional unconformities.
-
-
-
Sediment fluxes and buffering in the post‐glacial Indus Basin
Authors P. D. Clift and L. GiosanAbstractThe Indus drainage has experienced major variations in climate since the Last Glacial Maximum (LGM) that have affected the volumes and compositions of the sediment reaching the ocean since that time. We here present a comprehensive first‐order source‐to‐sink budget spanning the time since the LGM. We show that buffering of sediment in the floodplain accounts for ca. 20–25% of the mass flux. Sedimentation rates have varied greatly and must have been on average three times the recent, predamming rates. Much of the sediment was released by incision of fluvial terraces constructed behind landslide dams within the mountains, and especially along the major river valleys. New bedrock erosion is estimated to supply around 45% of the sedimentation. Around 50% of deposited sediment lies under the southern floodplains, with 50% offshore in large shelf clinoforms. Provenance indicators show a change of erosional focus during the Early Holocene, but no change in the Mid–Late Holocene because of further reworking from the floodplains. While suspended loads travel rapidly from source‐to‐sink, zircon grains in the bedload show travel times of 7–14 kyr. The largest lag times are anticipated in the Indus submarine fan where sedimentation lags erosion by at least 10 kyr.
-
-
-
Hinterland basin development and infilling through tectonic and eustatic processes: latest Messinian‐Gelasian Valdelsa Basin, Northern Apennines, Italy
Authors M. Benvenuti, S. Del Conte, N. Scarselli and S. DominiciAbstractThis article reports a stratigraphic and structural analysis of the Neogene‐Quaternary Valdelsa Basin (Central Italy), filled with up to 1000 m of uppermost Miocene to lower Pleistocene strata. The succession is subdivided into seven unconformity‐bounded stratigraphic units (synthems, or large‐scale depositional sequences) that include fluvio‐deltaic and shallow‐marine deposits. Structures related to basin shoulders and internal boundaries controlled the Neogene location and geometry of different depocentres. During the Tortonian‐Messinian, a buried NE‐trending high related to regional, basin‐transverse lineaments separated two adjacent sub‐basins. During the lower Pliocene, compressional displacement along NW‐trending, thrust‐related highs controlled the distribution of depocentres and dispersal of sediment. Extensional tectonics, although previously considered the dominant deformation style affecting the rear of the Northern Apennines since the late Miocene, is no longer considered a dominant control on tectono‐sedimentary development of the Valdelsa basin. Instead, the Valdelsa Basin shares features with continental hinterland basins of orogenic belts where compression, extension, and transcurrent stress fields determine a complex spatial and temporal record of accommodation and sediment supply. In the Valdelsa Basin tectonics and eustatic sea‐level fluctuations were dominant in forcing the deposition of sedimentary cycles at several scales. Zanclean and Gelasian large‐scale depositional sequences were mainly controlled by crustal shortening, whereas a eustatic signal was preferentially recorded during the Piacenzian. Smaller scale depositional sequences, common to most synthems, were controlled by orbitally forced glacio‐eustatic cycles.
-
-
-
Crustal‐scale fluid flow during the tectonic evolution of the Bighorn Basin (Wyoming, USA)
More LessAbstractStable isotope measurements (O, C, Sr), microthermometry and salinity measurements of fluid inclusions from different fracture populations in several anticlines of the Sevier‐Laramide Bighorn basin (Wyoming, USA) were used to unravel the palaeohydrological evolution. New data on the microstructural setting were used to complement previous studies and refine the fracture sequence at basin scale. The latter provides the framework and timing of fluid migration events across the basin during the Sevier and Laramide orogenic phases. Since the Sevier tectonic loading of the foreland basin until its later involvement into the Laramide thick‐skinned orogeny, three main fracture sets (out of seven) were found to have efficiently enhanced the hydraulic permeability of the sedimentary cover rocks. These pulses of fluid are attested by calcite crystals precipitated in veins from hydrothermal (T > 120 °C) radiogenic fluids derived from Cretaceous meteoric fluids that interacted with the Precambrian basement rocks. Between these events, vein calcite precipitated from formational fluids at chemical and thermal equilibrium with surrounding environment. At basin scale, the earliest hydrothermal pulse is documented in the western part of the basin during forebulge flexuring and the second one is documented in basement‐cored folds during folding. In addition to this East/West diachronic opening of the cover rocks to hydrothermal pulses probably controlled by the tectonic style, a decrease in 87/86Sr values from West to East suggests a crustal‐scale partially squeegee‐type eastward fluid migration in both basement and cover rocks since the early phase of the Sevier contraction. The interpretation of palaeofluid system at basin scale also implies that joints developed under an extensional stress regime are better vertical drains than joints developed under strike‐slip regime and enabled migration of basement‐derived hydrothermal fluids.
-
-
-
Integrated provenance record of a forearc basin modified by slab‐window magmatism: detrital‐ zircon geochronology and sandstone compositions of the Paleogene Arkose Ridge Formation, south‐central Alaska
Authors C. Kortyna, E. Donaghy, J. M. Trop and B. IdlemanAbstractThis study presents an integrated provenance record for ancient forearc strata in southern Alaska. Paleocene–Eocene sedimentary and volcanic strata >2000 m thick in the southern Talkeetna Mountains record nonmarine sediment accumulation in a remnant forearc basin. In these strata, igneous detritus dominates conglomerate and sandstone detrital modes, including plutonic and volcanic clasts, plagioclase feldspar, and monocrystalline quartz. Volcanic detritus is more abundant and increases upsection in eastern sandstone and conglomerate. U‐Pb ages of >1600 detrital zircons from 19 sandstone samples document three main populations: 60–48 Ma (late Paleocene–Eocene; 14% of all grains), 85–60 Ma (late Cretaceous–early Paleocene; 64%) and 200–100 Ma (Jurassic–Early Cretaceous; 11%). Eastern sections exhibit the broadest distribution of detrital ages, including a principal population of late Paleocene–Eocene ages. In contrast, central and western sections yield mainly late Cretaceous–early Paleocene detrital ages. Collectively, our results permit reconstruction of individual fluvial drainages oriented transverse to a dissected arc. Specifically, new data suggest: (1) Detritus was eroded from volcanic‐plutonic sources exposed along the arcward margin of the sampled forearc basin fill, primarily Jurassic–Paleocene magmatic‐arc plutons and spatially limited late Paleocene–Eocene volcanic centers; (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time from late Paleocene–Eocene volcanic centers, consistent with emplacement of a slab window beneath the northeastern part of the basin during spreading‐ridge subduction; (3) Western deposystems transported volcanic‐plutonic detritus from Jurassic–Paleocene remnant arc plutons and local eruptive centers that flanked the northwestern part of the basin; (4) Diagnostic evidence of sediment derivation from accretionary‐prism strata exposed trenchward of the basin fill is lacking. Our results provide geologic evidence for latest Cretaceous–early Paleocene exhumation of arc plutons and marine forearc strata followed by nonmarine sediment accumulation and slab‐window magmatism. This inferred history supports models that invoke spreading‐ridge subduction beneath southern Alaska during Paleogene time, providing a framework for understanding a mature continental‐arc/forearc‐basin system modified by ridge subduction. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during progressive exhumation of the volcanic edifice and increasing exposure of subvolcanic plutons. In contrast, our results show that forearc basins influenced by ridge subduction may record localized increases in juvenile volcanic detritus during late‐stage evolution in response to accumulation of volcanic sequences formed from slab‐window eruptive centers.
-
-
-
A snapshot of the Late Jurassic Western Tethys seafloor composition and morphology provided by the geochemistry of pelitic sediments (Corsica, Central Alps and Northern Apennines)
Authors L. Bracciali, L. Pandolfi and S. RocchiAbstractThe chemical composition of fine‐grained siliciclastic sediments is a powerful tool in provenance studies, either as a complement to other whole rock/single grain methods, or as a stand‐alone method when other techniques are not applicable, and particularly in those cases where the coarser sediment fractions are not available or the regional‐scale geologic framework is lost due major successive tectonic events. A comprehensive geochemical investigation of pelites from the post‐rift deposits of the Ligurian‐Piedmont ocean (sampled in tectonic units of the Alpine‐Apennine orogen: Balagne Nappe, Corsica; Tuscan Nappe and Internal Ligurian units, Northern Apennines; Err‐Platta units, Central Alps) has identified for the first time a major mafic‐ultramafic input immediately following rifting. Key trace element ratios (e.g. LaN/YbN < 10; avg. Eu/Eu* = 0.73 ± 0.06, 1SD; Th/(Cr + Ni + V) < 0.03) show that the pelitic siliciclastic layers intercalated in the Radiolarite Formation (the first post‐rift deposits) are systematically enriched in a mafic‐ultramafic source component compared with the younger post rift sediments (Calpionella Limestone and Palombini Shale). Such a peculiar chemical fingerprint is interpreted as the result of erosion and distribution across the whole basin (even to continental domains) of intraoceanic ophiolitic debris by turbidity and bottom currents sweeping the sea floor at the time of deposition of the Radiolarite Formation. Exhumed mantle and gabbroic‐basaltic rocks exposed at the morphologically articulated seafloor of the slow‐spreading Ligurian‐Piedmont ocean were available to erosion during the whole time‐span of the deposition of the Radiolarite Formation, whilst they became progressivey subordinate as a source as the basin floor was progressively covered by the siliciclastic input from the developing passive continental margins.
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)