- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 27, Issue 4, 2015
Basin Research - Volume 27, Issue 4, 2015
Volume 27, Issue 4, 2015
-
Rifting and pre‐rift lithosphere variability in the Orphan Basin, Newfoundland margin, Eastern Canada
Authors M. Gouiza, J. Hall and G. BertottiAbstractThe Orphan Basin, lying along the Newfoundland rifted continental margin, formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. To investigate the evolution of the Orphan Basin and the factors that governed its formation, we (i) analysed the stratigraphic and crustal architecture documented by seismic data (courtesy of TGS), (ii) quantified the tectonic and thermal subsidence along a constructed geological transect, and (iii) used forward numerical modelling to understand the state of the pre‐rift lithosphere and the distribution of deformation during rifting. Our study shows that the pre‐rift lithosphere was 200‐km thick and rheologically strong (150‐km‐thick elastic plate) prior to rifting. It also indicates that extension in the Orphan Basin occurred in three distinct phases during the Jurassic, the Early Cretaceous and the Late Cretaceous. Each rifting phase is characterized by a specific crustal and subcrustal thinning configuration. Crustal deformation initiated in the eastern part of the basin during the Jurassic and migrated to the west during the Cretaceous. It was coupled with a subcrustal thinning which was reduced underneath the eastern domain and very intense in the western domains of the basin. The spatial and temporal distribution of thinning and the evolution of the lithosphere rheology through time controlled the tectonic, stratigraphic and crustal architecture that we observe today in the Orphan Basin.
-
Sedimentology, provenance and geochronology of the upper Cretaceous–lower Eocene western Xigaze forearc basin, southern Tibet
Authors Devon A. Orme, Barbara Carrapa and Paul KappAbstractLocated on the southern margin of the Lhasa terrane in southern Tibet, the Xigaze forearc basin records Cretaceous to lower Eocene sedimentation along the southern margin of Asia, prior to and during the initial stages of continental collision with the Tethyan Himalaya in the Early Eocene. We present new measured stratigraphic sections, totalling 4.5 km stratigraphic thickness, from a 60 km E–W segment of the western portion of the Xigaze forearc basin, northeast of the Lopu Kangri Range (29.8007° N, 84.91827° E). In addition, we apply U–Pb detrital zircon geochronology to constrain the provenance and maximum depositional ages of investigated strata. Stratigraphic ages range between ca. 88 and ca. 54 Ma and sedimentary facies indicate a shoaling‐upward trend from deep‐marine turbidites to fluvial deposits. Depositional environments of coeval Cretaceous strata along strike include deep‐marine distal turbidites, slope‐apron debris‐flow deposits and marginal marine carbonates. This along‐strike variability in facies suggests an irregular paleogeography of the Asian margin prior to collision. Paleocene–Eocene strata are composed of shallow marine carbonates with abundant foraminifera such as Nummulites‐Discocyclina and Miscellanea‐Daviesina and transition into fluvial deposits dated at ca. 54 Ma. Sandstone modal analyses, conglomerate clast compositions and detrital zircon U–Pb geochronology indicate that forearc detritus in this region was derived solely from the Gangdese magmatic arc to the north. In addition, U–Pb detrital zircon age spectra within the upper Xigaze forearc stratigraphy are similar to those from Eocene foreland basin strata south of the Indus‐Yarlung suture near Sangdanlin, suggesting that the Xigaze forearc was a possible source of Sangdanlin detritus by ca. 55 Ma. We propose a model in which the Xigaze forearc prograded south over the accretionary prism and onto the advancing Tethyan Himalayan passive margin between 58 and 54 Ma, during late stage evolution of the forearc basin and the beginning of collision with the Tethyan Himalaya. The lack of documented forearc strata younger than ca. 51 Ma suggests that sedimentation in the forearc basin ceased at this time owing to uplift resulting from continued continental collision.
-
Quantitative progradation dynamics and stratigraphic architecture of ancient shallow‐marine clinoform sets: a new method and its application to the Upper Jurassic Sognefjord Formation, Troll Field, offshore Norway
Authors Stefano Patruno, Gary J. Hampson, Christopher A.‐L. Jackson and Paul S. WhippAbstractThis article presents a new numerical inversion method to estimate progradation rates in ancient shallow‐marine clinoform sets, which is then used to refine the tectono‐stratigraphic and depositional model for the Upper Jurassic Sognefjord Formation reservoir in the super‐giant Troll Field, offshore Norway. The Sognefjord Formation is a 10–200‐m thick, coarse‐grained clastic wedge, that was deposited in ca. 6 Myr by a fully marine, westward‐prograding, subaqueous delta system sourced from the Norwegian mainland. The formation comprises four, 10–60‐m thick, westerly dipping, regressive clinoform sets, which are mapped for several tens of kilometres along strike. Near‐horizontal trajectories are observed in each clinoform set, and the sets are stacked vertically. Clinoform age and progradation rates are constrained by: (i) regionally correlatable bioevents, tied to seismically mapped clinoforms and clinoform set boundaries that intersect wells, (ii) exponential age–depth interpolations between bioevent‐dated surfaces and a distinctive foreset‐to‐bottomset facies transition within each well, and (iii) distances between wells along seismic transects that are oriented perpendicular to the clinoform strike and tied to well‐based stratigraphic correlations. Our results indicate a fall in progradation rate (from 170–500 to 10–65 km Myr−1) and net sediment flux (from 6–14 to ≤1 km2 Myr−1) westwards towards the basin, which is synchronous with an overall rise in sediment accumulation rate (from 7–16 to 26–102 m Myr−1). These variations are attributed to progradation of the subaqueous delta into progressively deeper waters, and a concomitant increase in the strength of alongshore currents that transported sediment out of the study area. Local spatial and temporal deviations from these overall trends are interpreted to reflect a subtle structural control on sedimentation. This method provides a tool to improve the predictive potential of sequence stratigraphic and clinoform trajectory analyses and offers a greater chronostratigraphic resolution than traditional approaches.
-
Timing of Late Cretaceous shortening and basin development, Little Hatchet Mountains, southwestern New Mexico, USA – implications for regional Laramide tectonics
Authors Christopher A. Clinkscales and Timothy F. LawtonAbstractLaser ablation‐multi collector‐inductively coupled mass spectrometry U‐Pb geochronology, detailed field mapping and stratigraphic data offer improved insights into the timing and style of Laramide deformation and basin development in the Little Hatchet Mountains, southwestern New Mexico, USA, a key locality in the ‘southern Laramide province.’ The Laramide synorogenic section in the northern Little Hatchet Mountains comprises upper Campanian to Maastrichtian strata consisting of the Ringbone and Skunk Ranch formations, with a preserved maximum thickness of >2400 m, and the correlative Hidalgo Formation with a total thickness >1700 m. The Ringbone Formation and superjacent Skunk Ranch Formation are each generally composed of (1) a basal conglomerate member; (2) a middle member consisting of lacustrine shale, limestone, sandstone, and interbedded ash‐fall tuffs; and (3) an upper sandstone and conglomerate member. Basaltic andesite flows are intercalated with the upper member of the Ringbone Formation and the middle member of the Skunk Ranch Formation. The Hidalgo Formation, which crops out in the northern part of the range, is dominantly composed of basaltic andesite breccias and flows equivalent to those of the Ringbone and Skunk Ranch formations. The Laramide section was deposited in an intermontane basin partitioned across intrabasinal thrust structures, which controlled growth‐stratal development. U‐Pb zircon ages from five tuffs indicate that the age range of the Laramide sedimentary succession is ca. 75–70 Ma. U‐Pb detrital‐zircon age data (n = 356 analyses) from the Ringbone Formation and a Lower Cretaceous unit indicate sediment contribution from uplifted Lower and Upper Cretaceous rocks adjacent to the basin and the contemporary Tarahumara magmatic arc in nearby northern Sonora, Mexico. The new ages, combined with published data, indicate that uplift, basin development, and magmatism in the region proceeded diachronously northeastwards as the subducting Farallon slab flattened under northern Mexico and southern New Mexico from Campanian to Palaeogene time.
-
Controls on landscape and drainage evolution in regions of distributed normal faulting: Perachora Peninsula, Corinth Rift, Central Greece
Authors O. B. Duffy, S. H. Brocklehurst, R. L. Gawthorpe, M. R. Leeder and E. FinchAbstractZones of distributed faulting with narrow (2–3 km) across‐strike spacing form a common structural style within rifts, especially in accommodation zones, and contrast with crustal‐scale half‐grabens, where strain is localised on normal faults spaced 10–30 km apart. These contrasting styles are likely to have a significant impact on geomorphic development, sediment routing and the stratigraphic record. Perachora Peninsula, in the eastern part of the active Corinth Rift, Greece, is one such zone of distributed faulting. We analyse the topography and drainage networks developed around these closely spaced normal faults, and compare our results with published studies from crustal‐scale half‐grabens. We subdivide the Perachora Peninsula into a series of drainage domains and examine the tectono‐geomorphic evolution of three domains that best represent the range of topographic characteristics, base levels and drainage network styles. We interpret that the perched, endorheic nature of the Asprokampos domain developed due to uplift and backtilt on offshore faults. The Pisia West domain, which drains the valley between the Skinos and Pisia Faults and responds to a perched base level, is interpreted to have experienced a complex base‐level history with episodic connections to sea level. The Skinos Relay domain drains to sea level, lying on the relay ramp between the closely spaced Kamarissa and Skinos Faults. Here, interaction between the displacement fields associated with each of the closely spaced faults controls the rate and style of landscape evolution. In contrast to crustal‐scale half‐grabens, observations from Perachora Peninsula suggest that zones of distributed faulting may be characterised by: (i) perched, internal sediment sinks at different elevations, responding to multiple base levels; (ii) minimal fault‐transverse sediment transport; (iii) interaction of uplift and subsidence fields associated with closely spaced faults, which modulate the rate and style of landscape response; and (iv) complex erosion and sedimentation histories, the evidence for which may have low preservation potential in the stratigraphic record.
-
Fluvial deposition during transition from flexural to dynamic subsidence in the Cordilleran foreland basin: Ericson Formation, Western Wyoming, USA
Authors Ryan Leary, Peter DeCelles, George Gehrels and Matthew MorrissAbstractThe Ericson Formation was deposited in the distal foredeep of the Cordilleran foreland basin during Campanian time. Isopach data show that it records early dynamic subsidence and the onset of basin partitioning by Laramide uplifts. The Ericson Formation is well exposed around the Rock Springs uplift, a Laramide structural dome in southwestern Wyoming; the formation is thin, regionally extensive, and does not display the wedge‐shaped geometry typical of foredeep deposits. Sedimentation in this area was controlled both by activity in the thrust belt and by intraforeland tectonics. The Ericson Formation is ideally situated both spatially and temporally to study the transition from Sevier to Laramide (thin‐ to thick‐skinned) deformation which corresponded to the shift from flexural to dynamic subsidence and the demise of the Cretaceous foreland basin system. We establish the depositional age of the Ericson Formation as ca. 74 Ma through detrital zircon U–Pb analysis. Palaeocurrent data show a generally southeastward transport direction, but northward indicators near Flaming Gorge Reservoir suggest that the intraforeland Uinta uplift was rising and shedding sediment northward by late Campanian time. Petrographic data and detrital zircon U–Pb ages indicate that Ericson sediment was derived from erosion of Proterozoic quartzites and Palaeozoic and Mesozoic quartzose sandstones in the Sevier thrust belt to the west. The new data place temporal and geographic constraints on attempts to produce geodynamic models linking flat‐slab subduction of the oceanic Farallon plate to the onset of the Laramide orogenic event.
-
The effect of lateral tectonic tilting on fluviodeltaic surficial and stratal asymmetries: experiment and theory
Authors Jessica Kopp and Wonsuck KimAbstractTectonic influence on deltas has long been recognized for its importance in morphodynamic and stratigraphic development. Here, we explore the control of lateral tectonic tilting on a prograding fluviodeltaic system through six laboratory experiments with a range of tilting rates. Basement tilting was applied along an axis that bisects the centre of the experimental delta, which forced uplift on one half of the basin and subsidence on the opposite half. In the experiments with lower tilting rates, the delta advanced faster in the direction of uplift due to the decline in relative base level. This slow uplift created truncated stratigraphic intervals that were dominated by active channel cut and fill. On the opposite side where subsidence occurred, the shoreline still prograded, but with decreased rates, while the delta topset was deposited thicker, alternating packages of fine and coarse sediments. The fluvial system was active uniformly across the delta in these slow tilting runs and produced asymmetry in shoreline planform geometries. In the experiments with higher titling rates, deposition quickly ceased on the uplift side and stacked conformable sequences of delta lobes on the subsidence side. The result was an overall lack of progradation in all directions. Progressively greater tilting rates used in these high tilting runs yielded steering of channels towards the direction with higher subsidence and developed even more asymmetrical stratal patterns. Characteristic tectonic and channel timescales applied to the experimental conditions prove to be good predictors of the fluviodeltaic planform and stratigraphic asymmetries. The deltaic asymmetry for the Ganges–Brahmaputra (G–B) system is largely comparable to the experiments with timescale ratios similar to those estimated for the G–B system.
-
Deep‐sourced gas seepage and methane‐derived carbonates in the Northern Adriatic Sea
AbstractIn the Northern Adriatic Sea, the occurrence of gas seepage and of unique rock outcrops has been widely documented. The genesis of these deposits has recently been ascribed to gas venting, leading to their classification as methane‐derived carbonates. However, the origin of seeping gas was not clearly constrained. Geophysical data collected in 2009 reveal that the gas‐enriched fluid vents are deeply rooted. In fact, the entire Plio‐Quaternary succession is characterized by widespread seismic anomalies represented by wipe‐out zones, and interpreted as gas chimneys. They commonly root at the base of the Pliocene sequence but also within the Palaeogene succession, where they appear to be associated to deep‐seated faults. We suggest that there is a structural control on chimney distribution. Chimneys originate and terminate at different stratigraphic levels; commonly they reach the seafloor, where authigenic carbonate deposits form locally. Gas analyses of some gas bubble streams just above the rock outcrops reveal that gas is composed mainly of methane. Geochemical analyses performed at four selected outcrop sites show that these deposits formed as a consequence of active gas venting. In particular, geochemical analyses indicate carbonate precipitation from microbial oxidation of methane‐rich fluids, although a straightforward correlation with the source depth of gas feeding the authigenic carbonates cannot yet be clearly defined.
-
Detrital thermochronologic record of burial heating and sediment recycling in the Magallanes foreland basin, Patagonian Andes
AbstractThe Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rapidly cooled, first‐cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best‐fit thermal histories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust‐related deformation deeply eroded the Dorotea Formation from ca. 5 km burial depths and may be responsible for the development of a basin‐wide Palaeogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first‐cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation.
-
Along‐strike evolution of folding, stretching and breaching of supra‐salt strata in the Plataforma Burgalesa extensional forced fold system (northern Spain)
Authors Stefano Tavani and Pablo GranadoAbstractThe Plataforma Burgalesa is a partly exposed extensional forced fold system with an intermediate salt layer, which has developed along the southern portion of the Basque‐Cantabrian Basin from Malm to Early Cretaceous as part of the Bay of Biscay‐Pyrenean rift system. Relationships between syn‐ and pre‐rift strata of the supra‐salt cover sequence and distribution of intra‐cover second‐order faults are observed both along seismic sections and at the surface. These relationships indicate an along‐strike variability of the extensional structural style. After a short period of salt mobilization and forced folding, high slip rates in the central portion of the major basement faults have rapidly promoted brittle behaviour of the salt layer, preventing further salt mobilization and facilitating the propagation of the fault across the salt layer. In contrast, at the tip regions of basement faults, slower slip rates have facilitated ductile salt behaviour, ensuring its further evaporite evacuation, preventing fault propagation across the salt layer and, in essence, allowing for a long‐living forced folding process. Our results indicate the important effect of along‐strike variation in displacement and displacement rates in controlling evaporite behaviour in extensional basins. Amount of displacement and displacement rates are key factors controlling the propagation of basement faults across evaporite layers. In addition, growth strata patterns are recognized as a powerful tool for constraining the up‐dip propagation history of basement faults in extensional fault‐related fold systems with intermediate décollement levels.
Volumes & issues
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)
Most Read This Month
