- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 29, Issue 3, 2017
Basin Research - Volume 29, Issue 3, 2017
Volume 29, Issue 3, 2017
-
-
Quantifying the influence of sill intrusion on the thermal evolution of organic‐rich sedimentary rocks in nonvolcanic passive margins: an example from ODP 210‐1276, offshore Newfoundland, Canada
Authors Alexander Peace, Ken McCaffrey, Jonathan Imber, Richard Hobbs, Jeroen van Hunen and Keith GerdesAbstractIntrusive magmatism is an integral and understudied component in both volcanic and nonvolcanic passive margins. Here, we investigate the thermal effects of widespread (ca. 20 000 km2) intrusive magmatism on the thermal evolution of organic‐rich sedimentary rocks on the nonvolcanic Newfoundland passive margin. ODP 210‐1276 (45.41°N, 44.79°W) intersects two sills: an older, upper sill and a younger, lower sill that are believed to correspond to the high amplitude ‘U‐reflector’ observed across the Newfoundland Basin. A compilation of previous work collectively provides; (1) emplacement depth constraints, (2) vitrinite reflectance data and (3) 40Ar/39Ar dates. Collectively, these data sets provide a unique opportunity to model the conductive cooling of the sills and how they affect thermal maturity of the sedimentary sequence. A finite differences method was used to model the cooling of the sills, with the model outputs then being entered into the EASY%Ro vitrinite reflectance model. The modelled maturation profile for ODP 210‐1276 shows a significant but localized effect on sediment maturity as a result of the intrusions. Our results suggest that even on nonvolcanic margins, intrusive magmatism can significantly influence the thermal evolution in the vicinity of igneous intrusions. In addition, the presence of widespread sills on nonvolcanic passive margins such as offshore Newfoundland may be indicative of regional‐scale thermal perturbations that should be considered in source rock maturation studies.
-
-
-
Salt tectonics in an intracontinental transform setting: Cumberland and Sackville basins, southern New Brunswick, Canada
Authors Simon Craggs, Dave Keighley, John W. F. Waldron and Adrian ParkAbstractSalt tectonics have markedly influenced the rapid evolution of the Upper Palaeozoic Cumberland Basin of Atlantic Canada, including the ca. 5 km‐thick Mississippian – Pennsylvanian stratigraphic succession exposed along the UNESCO World Heritage coastline at Joggins, Nova Scotia. A diapiric salt wall is exposed in the Minudie Anticline to the north of the Joggins section on the Maringouin Peninsula of New Brunswick, which corresponds to the fault‐bounded northern margin of the Cumberland Basin. The salt wall is of Visean evaporites of the Windsor Gp that originally were buried by red‐beds of the Mabou Gp in the Serpukhovian, and later by fluvial and floodplain strata (Boss Point Fm, Cumberland Gp) in the Yeadonian (mid‐Bashkirian, Early Pennsylvanian). Folds and faults in the Boss Point and overlying basal Little River formations are truncated by an angular unconformity at the base of overlying red‐beds of the Grande Anse Fm. Re‐evaluation of the palynological data delimits the Grande Anse Fm as Langsettian, providing a tight constraint of less than 2 myr on the timing of deformation. Diversion of palaeoflows by the rising salt structure, noted in previous work on the upper Boss Point Fm, occurs to the north of the diapiric anticline. This is interpreted to signify the development of a mini‐basin on commencement of diapirism once a ~1.5 km‐thick succession of clastic strata had buried the salt. Faults and folds in the succession below the unconformity indicate an initial phase of dextral transpressive strike‐slip motion, which may have promoted halokinesis. Reverse faults indicate shortening associated with northward development and overturn of the Minudie Anticline during transpression; subsequent normal faulting was associated with collapse of the sediment pile and underlying salt structure.
-
-
-
Cretaceous evolution of the Andean margin between 36°S and 40°S latitude through a multi‐proxy provenance analysis of Neuquén Basin strata (Argentina)
AbstractDuring the Cretaceous, the Neuquén Basin transitioned from an extensional back‐arc to a retroarc foreland basin. We present a multi‐proxy provenance study of Aptian to Santonian (125–84 Ma) continental sedimentary rocks preserved in the Neuquén Basin used to resolve changes of sediment drainage pattern in response to the change in tectonic regime. Sandstone petrology and U–Pb detrital zircon geochronology constrain the source units delivering detritus to the basin; apatite U–Pb and fission track dating further resolve provenance and determine the age and patterns of exhumation of the source rocks. Sandstone provenance records a sharp change from a mixed orogenic source during Aptian time (ca. 125 Ma), to a magmatic arc provenance in the Cenomanian (ca. 100 Ma). We interpret this provenance change as the result of the drainage pattern reorganisation from divergent to convergent caused by tectonic basin inversion. During this inversion and early stages of contraction, a transient phase of uplift and basin erosion, possibly due to continental buckling, caused the pre‐Cenomanian unconformity dividing the Lower from Upper Cretaceous strata in the Neuquén Basin. This phase was followed by the development of a retroarc foreland basin characterised by a volcanic arc sediment provenance progressively shifting to a mixed continental basement provenance during Turonian‐Santonian (90–84). According to multi‐proxy provenance data and lag times derived from apatite fission track analysis, this trend is the result of a rapidly exhuming source within the Cordillera to the west, in response to active compressional tectonics along the western margin of South America, coupled with the increasing contribution of material from the stable craton to the east; this contribution is thought to be the result of the weak uplift and exhumation of the foreland due to eastward migration of the forebulge.
-
-
-
High‐resolution evolution of terrigenous sediment yields in the Provence Basin during the last 6 Ma: relation with climate and tectonics
AbstractBasin‐wide correlation of Messinian units and Plio‐Quaternary chronostratigraphic markers (5.3 Ma, 2.6 Ma, 0.9 Ma and 0.45 Ma), the mapping of total sediment thickness and the determination of overall sedimentary volumes enabled us to provide a high‐resolution quantitative history of sediment volumes for the last 6 Ma along the Gulf of Lions margin. The results point to (i) a dramatic increase in terrigenous sediment input during the Messinian Salinity Crisis. This increased sedimentation reflects enhanced regional fluvial erosion related to the dramatic fall of Mediterranean base‐level. Stronger weathering due to a regional wetter climate probably also increased erosional fluxes. (ii) A sediment input three times higher during the Plio‐Quaternary compared to the Miocene seems in agreement with published measurements from World's ocean. However, the timing of this increase being uncertain, it implies that the trigger(s) also remain(s) uncertain. (iii) A decrease in detrital volume around 2.6 Ma is attributed to a regional change in the drainage pattern of rivers in the northwestern Alps. (iv) This study also highlights the Mid‐Pleistocene Revolution around 0.9 Ma, which resulted in an almost doubling of sediment input in the Provencal Basin.
-
-
-
Models of the rapid post‐rift subsidence in the eastern Qiongdongnan Basin, South China Sea: implications for the development of the deep thermal anomaly
Authors Xiaobin Shi, Haiyan Jiang, Jun Yang, Xiaoqiu Yang and Hehua XuAbstractThe Qiongdongnan Basin is one of the largest Cenozoic rifted basins on the northern passive margin of the South China Sea. It is well known that since the Late Miocene, approximately 10 Ma after the end of the syn‐rift phase, this basin has exhibited rapid thermal subsidence. However, detailed analysis reveals a two‐stage anomalous subsidence feature of the syn‐rift subsidence deficit and the well‐known rapid post‐rift subsidence after 10.5 Ma. Heat‐flow data show that heat flow in the central depression zone is 70–105 mW m−2, considerably higher than the heat flow (<70 mW m−2) on the northern shelf. In particular, there is a NE‐trending high heat‐flow zone of >85 mW m−2 in the eastern basin. We used a numerical model of coupled geothermal processes, lithosphere thinning and depositional processes to analyse the origin of the anomalous subsidence pattern. Numerical analysis of different cases shows that the stretching factor βs based on syn‐rift sequences is less than the observed crustal stretching factor βc, and if the lithosphere is thinned with βc during the syn‐rift phase (before 21 Ma), the present basement depth can be predicted fairly accurately. Further analysis does not support crustal thinning after 21 Ma, which indicates that the syn‐rift subsidence is in deficit compared with the predicted subsidence with the crustal stretching factor βc. The observed high heat flow in the central depression zone is caused by the heating of magmatic injection equivalently at approximately 3–5 Ma, which affected the eastern basin more than the western basin, and the Neogene magmatism might be fed by the deep thermal anomaly. Our results suggest that the causes of the syn‐rift subsidence deficit and rapid post‐rift subsidence might be related. The syn‐rift subsidence deficit might be caused by the dynamic support of the influx of warmer asthenosphere material and a small‐scale thermal upwelling beneath the study area, which might have been persisting for about 10 Ma during the early post‐rift phase, and the post‐rift rapid subsidence might be the result of losing the dynamic support with the decaying or moving away of the deep thermal source, and the rapid cooling of the asthenosphere. We concluded that the excess post‐rift subsidence occurs to compensate for the syn‐rift subsidence deficit, and the deep thermal anomaly might have affected the eastern Qiongdongnan Basin since the Late Oligocene.
-
-
-
A simplified stress analysis of rising salt domes
Authors Mahdi Heidari, Maria A. Nikolinakou, Peter B. Flemings and Michael R. HudecAbstractWe use a simple analytical model to estimate the stress field in density‐driven, rising salt domes and adjacent sediments, and to describe the evolution of these domes. We show that the pressure exerted by the salt pushing out against its wall rocks (the salt pressure) decreases linearly up the flank of the dome, but is always greater than the overburden stress. In fact, the salt pressure normal to the dome boundary is everywhere the maximum principal stress, whereas the hoop stress parallel to the circumference of the dome is the minimum stress. In addition, we quantitatively describe the critical stages of salt dome evolution (initiation, upbuilding, and downbuilding), relating these stages to sedimentation rate and basin thickness. This analysis also shows that even the highest sedimentation rates are unlikely to accumulate enough sediments to bury downbuilding domes as long as the salt supply is unrestricted. Despite the simplicity of the model, its predictions are in good agreement with field observations near salt domes. Overall, our analytical model can provide critical insight into the stress field perturbation in and near rising salt domes and can be used to assess the accuracy of numerical models and field measurements near these domes.
-
-
-
Intraplate uplift: new constraints on the Hoggar dome from the Illizi basin (Algeria)
AbstractZones of anomalously high topography within continental interiors, distant from active plate boundaries, are interpreted as being either dynamically supported by viscous flow in the underlying mantle or influenced by plate tectonics. Constraining the models of their genesis requires accurate data on the timing and dimensions of such features. New apatite fission‐track and thermal maturity data from the Illizi Basin in Algeria quantify the magnitude and timing of kilometre–scale uplift and exhumation of the northern flank of the Hoggar swell in North Africa. The findings of this study, integrated with previously published thermochronological data, confirm that long‐wavelength regional uplift occurred during the Cenozoic extending over a distance in excess of 1500 km from north to south. The uplift, centred on the Hoggar Massif, significantly impacted the flanking Illizi and Tim Mersoï basins. The combination of thermal history modelling and regional stratigraphic observations indicates that the onset of exhumation of the Illizi Basin likely occurred during the Eocene, broadly coincident with magmatism on the Hoggar Massif to the south and the onset of tectonic shortening in the Atlasic belt to the north.
-
-
-
Sediment partitioning, continental slopes and base‐of‐slope systems
Authors Bradford E. Prather, Ciaran O'Byrne, Carlos Pirmez and Zoltán SylvesterAbstractDeciphering the role slope topography plays in partitioning sediment on siliciclastic continental slope and base‐of‐slope systems helps our understanding of slope depositional processes in significant ways: (1) by validation of large‐scale depositional process models for continental margins, (2) by validation of numerical basin‐scale stratigraphic forward models used to test and deploy source‐to‐sink (S2S) concepts and (3) by creating models for setting reservoir presence and quality expectations in frontier areas poorly constrained by wells and seismic. A global database consisting of >700 km of drilled stratigraphy provide empirical rock data lacking from most S2S studies. Analysis of calibrated seismic stratigraphic units characterised using the contextual framework laid out in this paper show that both gross depositional environments (GDEs) and sand content occur across slope profiles in systematic ways. The challenge in using these observations to quantify reservoir risk and uncertainty lies with relating the observations to depositional processes that can be used to characterise frontier basins that lack calibration. Depositional process‐based understanding encoded in 3D stratigraphic forward models (SFM) can simulate both lithologies and GDEs providing broad predictions for exploration at the scale of an entire basin or slope system. Stratigraphic forward models allow the integration of S2S understanding and provide a framework for testing sediment‐partitioning hypotheses in frontier settings. Valid S2S models must balance sediment yield from the source catchments with sinks, and be consistent with basin specific observations. The proportions of GDEs across the slope provide additional validation criteria to ensure the models are plausible.
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)