- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 29, Issue 5, 2017
Basin Research - Volume 29, Issue 5, 2017
Volume 29, Issue 5, 2017
-
-
Mechanisms of late Quaternary fault throw‐rate variability along the north central Gulf of Mexico coast: implications for coastal subsidence
AbstractQuaternary sea‐level cycles have caused dramatic depocentre shifts near the mouths of major rivers. The effects of these shifts on fault activity in passive margin settings is poorly known, as no studies have constrained passive margin fault throw‐rate variability over 103 to 105 year time scales. Here we present 11 mean throw rates for the Tepetate–Baton Rouge fault zone along the northern Gulf of Mexico coast in southern Louisiana. These data were obtained by optically stimulated luminescence dating over time scales spanning the last interglacial to the late Holocene. The mean throw rate is ca. 0.22 mm year−1 during the late Holocene, ca. 0.03 mm year−1 during the last glacial and at least 0.07 mm year−1 during the last interglacial. Throw rates averaged over the late Pleistocene to present are spatially uniform within our study area. The temporal variability in throw rates suggests that shifts of the Mississippi River depocentre relative to this fault zone, driven by Quaternary sea‐level cycles, may have imposed a significant control on fault activity. The late Holocene throw rate is at least in the order of magnitude smaller than the rates of land‐surface subsidence in the Mississippi Delta, indicating that this fault zone is not a dominant contributor to subsidence in this region.
-
-
-
Detrital zircon geochronology of pre‐ and syncollisional strata, Acadian orogen, Maine Appalachians
Authors Dwight C. Bradley and Paul O'SullivanAbstractThe Central Maine Basin is the largest expanse of deep‐marine, Upper Ordovician to Devonian metasedimentary rocks in the New England Appalachians, and is a key to the tectonics of the Acadian Orogeny. Detrital zircon ages are reported from two groups of strata: (1) the Quimby, Rangeley, Perry Mountain and Smalls Falls Formations, which were derived from inboard, northwesterly sources and are supposedly older; and (2) the Madrid, Carrabassett and Littleton Formations, which were derived from outboard, easterly sources and are supposedly younger. Deep‐water deposition prevailed throughout, with the provenance shift inferred to mark the onset of foredeep deposition and orogeny. The detrital zircon age distribution of a composite of the inboard‐derived units shows maxima at 988 and 429 Ma; a composite from the outboard‐derived units shows maxima at 1324, 1141, 957, 628, and 437 Ma. The inboard‐derived units have a greater proportion of zircons between 450 and 400 Ma. Three samples from the inboard‐derived group have youngest age maxima that are significantly younger than the nominal depositional ages. The outboard‐derived group does not share this problem. These results are consistent with the hypothesised provenance shift, but they signal potential problems with the established stratigraphy, structure, and (or) regional mapping. Shallow‐marine deposits of the Silurian to Devonian Ripogenus Formation, from northwest of the Central Maine Basin, yielded detrital zircons featuring a single age maximum at 441 Ma. These zircons were likely derived from a nearby magmatic arc now concealed by younger strata. Detrital zircons from the Tarratine Formation, part of the Acadian foreland‐basin succession in this strike belt, shows age maxima at 1615, 980 and 429 Ma. These results are consistent with three episodes of zircon recycling beginning with the deposition of inboard‐derived strata of the Central Maine Basin, which were shed from post‐Taconic highlands located to the northwest. Next, southeasterly parts of this succession were deformed in the Acadian orogeny, shedding detritus towards the northwest into what remained of the basin. Finally, by Pragian time, all strata in the Central Maine Basin had been deformed and detritus from this new source accumulated as the Tarratine Formation in a new incarnation of the foreland basin. Silurian‐Devonian strata from the Central Maine Basin have similar detrital zircon age distributions to coeval rocks from the Arctic Alaska and Farewell terranes of Alaska and the Northwestern terrane of Svalbard. We suggest that these strata were derived from different segments of the 6500‐km‐long Appalachian‐Caledonide orogen.
-
-
-
Development of sedimentary basins: differential stretching, phase transitions, shear heating and tectonic pressure
Authors Ebbe H. Hartz, Sergei Medvedev and Daniel W. SchmidAbstractClassical models of lithosphere thinning predict deep synrift basins covered by wider and thinner post‐rift deposits. However, synextensional uplift and/or erosion of the crust are widely documented in nature (e.g. the Base Cretaceous unconformity of the NE Atlantic), and generally the post‐rift deposits dominate basins fills. Accordingly, several basin models focus on this discrepancy between observations and the classical approach. These models either involve differential thinning, where the mantle thins more than the crust thereby increasing average temperature of the lithosphere, or focus on the effect of metamorphic reactions, showing that such reactions decrease the density of lithospheric rocks. Both approaches result in less synrift subsidence and increased post‐rift subsidence. The synextensional uplift in these two approaches happens only for special cases, that is for a case of initially thin crust, specific mineral assemblage of the lithospheric mantle or extensive differential thinning of the lithosphere. Here, we analyse the effects of shear heating and tectonic underpressure on the evolution of sedimentary basins. In simple 1D models, we test the implications of various mechanisms in regard to uplift, subsidence, density variations and thermal history. Our numerical experiments show that tectonic underpressure during lithospheric thinning combined with pressure‐dependent density is a widely applicable mechanism for synextensional uplift. Mineral phase transitions in the subcrustal lithosphere amplify the effect of underpressure and may result in more than 1 km of synextensional erosion. Additional heat from shear heating, especially combined with mineral phase transitions and differential thinning of the lithosphere, greatly decreases the amount of synrift deposits.
-
-
-
Structural evolution of a gravitationally detached normal fault array: analysis of 3D seismic data from the Ceduna Sub‐Basin, Great Australian Bight
Authors A. G. Robson, R. C. King and S. P. HolfordAbstractThe growth, interaction and controls on normal fault systems developed within stacked delta systems at extensional delta‐top settings have not been extensively examined. We aim to analyse the kinematic, spatial and temporal growth of a Cretaceous aged, thin‐skinned, listric fault system in order to further the understanding of how gravity‐driven fault segments and fault systems develop and interact at an extensional delta‐top setting. Furthermore, we aim to explore the influence of a pre‐existing structural framework on the development of gravity‐driven normal faults through the examination of two overlapping, spatially and temporally distinct delta systems. To do this, we use three‐dimensional (3D) seismic reflection data from the central Ceduna Sub‐basin, offshore southern Australia. The seismic reflection data images a Cenomanian‐Santonian fault system, and a post‐Santonian fault system, which are dip‐linked through an intervening Turonian‐early Campanian section. Both of these fault systems contain four hard‐linked strike assemblages oriented NW–SE (127–307), each composed of 13 major fault segments. The Cenomanian‐Santonian fault system detaches at the base of a shale interval of late Albian age, and is characterised by kilometre‐scale growth faults in the Cenomanian‐Sanontian interval. The post‐Santonian fault system nucleated in vertical isolation from the Cenomanian‐Santonian fault system. This is evident through displacement minima observed at Turonian‐early Campanian levels, which is indicative of vertical segmentation and eventual hard dip‐linkage. Our analysis constrains fault growth into four major evolutionary stages: (1) early Cenomanian nucleation and growth of fault segments, resulting from gravitational instability, and with faults detaching on the lower Albian interval; (2) Santonian cessation of growth for the majority of faults; (3) erosional truncation of fault upper tips coincident with the continental breakup of Australia and Antarctica (ca. 83 Ma); (4) Campanian‐Maastrichtian reactivation of the underlying Cenomanian‐Santonian fault system, inducing the nucleation, growth and consequential dip‐linkage of the post‐Santonian fault system with the underlying fault system. Our results highlight the along‐strike linkage of fault segments and the interaction through dip‐linkage and fault reactivation, between two overlapping, spatially and temporally independent delta systems of Cenomanian and late Santonian‐Maastrichtian age in the frontier Ceduna Sub‐Basin. This study has implications regarding the growth of normal fault assemblages, through vertical and lateral segment linkage, for other stacked delta systems (such as the Gulf of Mexico) where upper delta systems develop over a pre‐existing structural framework.
-
-
-
Comment on Non‐unique stratal geometries: implications for sequence stratigraphic interpretations, by: P.M. Burgess and G.D. Prince, Basin Research (2015) 27, 351–365
Authors Octavian Catuneanu and Massimo ZecchinAbstractThe non‐unique variability highlighted by Burgess & Prince (Basin Res. 2015, 27, 351) (i.e. the origin and timing of maximum flooding surfaces, maximum regressive surfaces and subaerial unconformities; the process of topset aggradation in relation with the various types of shoreline trajectory; and the multiple controls that may affect the progradation and retrogradation of a shoreline) is irrelevant to the workflow of sequence stratigraphy. What is relevant is the observation of the unique stratal geometries that are diagnostic to the definition of all units and surfaces of sequence stratigraphy. In downstream‐controlled settings, these unique stratal stacking patterns relate to the forced regressive, normal regressive and transgressive shoreline trajectories. Multiple controls interplay during the formation of each type of stacking pattern, including accommodation, sediment supply and the energy of the sediment‐transport agents. This interplay explains the non‐unique variability, but does not change the unique criteria that afford a consistent application of sequence stratigraphy. Failure to rationalize the non‐unique variability within the context of unique stratal geometries is counterproductive, and obscures the simple workflow of sequence stratigraphy.
-
-
-
Tectonic evolution of an intraplate basin: the Lower Tagus Cenozoic Basin, Portugal
Authors João Carvalho, Carlos Pinto, Ruben Dias, Taha Rabeh, Luis Torres, José Borges, Ricardo Torres and Henrique DuarteAbstractThis article focuses on the reinterpretation of well, seismic reflection, magnetic, gravimetric, surface wave and geological surface data, together with the acquisition of seismic noise data to study the Lower Tagus Cenozoic Basin tectono‐sedimentary evolution. For the first time, the structure of the base of the basin in its distal and intermediate sectors is unravelled, which was previously only known in the areas covered by seismic reflection data (distal and small part of intermediate sectors). A complex geometry was found, with three subbasins delimited by NNE‐SSW faults and separated by WNW‐ESE to NW‐SE oriented horsts. In the area covered by seismic reflection data, four horizons were studied: top of the Upper Miocene, Lower to Middle Miocene top, the top of the Palaeogene and the base of Cenozoic. Seismic data show that the major filling of the basin occurred during Upper Miocene. The fault pattern affecting Neogene and Palaeogene units derived here points to that of a polyphasic basin. In the Palaeogene, the Vila Franca de Xira (VFX) and a NNE‐SSW trending previously unknown structure (ABC fault zone) probably acted as the major strike‐slip fault zones of the releasing bend of a pull‐apart basin, which produced a WNW‐ESE to NW‐SE fault system with transtensional kinematic. During the Neogene, as the stress regime rotated anticlockwise to the present NW‐SE to WNW‐ESE orientation, the VFX and Azambuja fault zones acted as the major transpressive fault zones and Mesozoic rocks overthrusted Miocene sediments. The reactivation of WNW‐ESE to NW‐SE fault systems with a dextral strike‐slip component generated a series of horsts and grabens and the partitioning of the basin into several subbasins. Therefore, we propose a polyphasic model for the area, with the formation of an early pull‐apart basin during the Palaeogene caused by an Iberia–Eurasia plates collision that later evolved into an incipient foreland basin along the Neogene due to a NW‐SE to WNE‐ESE oriented Iberia–Nubia convergence. This convergence is producing uplift in the area since the Quaternary except for the Tagus estuary subbasin around the VFX fault, where subsidence is observed. This may be due to the locking or the development of a larger component of strike‐slip movement of the NNE‐SSW to N‐S thrust fault system with the exception of the VFX fault, which is more favourably oriented to the maximum compressive stress.
-
-
-
Triassic to Early Jurassic climatic trends recorded in the Jameson Land Basin, East Greenland: clay mineralogy, petrography and heavy mineralogy
Authors Audrey Decou, Steven D. Andrews, David H. M. Alderton and Andrew MortonAbstractDuring the Early Triassic the Jameson Land Basin (Central East Greenland) was located around 30° N, in the Northern arid belt, but by the Early Jurassic was positioned at a latitude of approximately 50° N. This study examines the record of this transition through a largely continental succession using clay mineralogy, sedimentology, petrography and heavy mineralogy. The Jameson Land Basin is aligned north–south and is 280 km long and 80 km wide. Following an Early Triassic marine phase the basin was filled by predominantly continental sediments. The Early‐to‐Late Triassic succession comprises coarse alluvial clastics (Pingo Dal Formation) overlain by a succession of fine‐grained evaporite‐rich playa/lacustrine sediments (Gipsdalen Formation), indicative of arid climatic conditions. The overlying buff, dolomitic and then red lacustrine mudstones with subordinate sandstones (Fleming Fjord Formation) record reduced aridity. The uppermost Triassic grades into dark organic‐rich, and in places coaly, mudstones and buff coarse‐grained sandstones of lacustrine origin that belong to the Kap Stewart Group, which spans the Triassic–Jurassic boundary, and appear to record more humid climatic conditions. Clay mineralogy analyses highlight significant variations in the kaolinite/illite ratio, from both mudstone and sandstone samples, through the Triassic and into the earliest Jurassic. Complementary heavy mineral analyses demonstrate that the variations recognised in clay mineralogy and sandstone maturity through the Triassic–Early Jurassic succession are not a product of major provenance change or the effect of significant diagenetic alteration. The observed variations are consistent with sedimentological evidence for a long‐term trend towards more humid conditions through the Late Triassic to Early Jurassic, and the suggestion of a significant pluvial episode in the mid‐Carnian.
-
-
-
Impact of normal faulting and pre‐rift salt tectonics on the structural style of salt‐influenced rifts: the Late Jurassic Norwegian Central Graben, North Sea
Authors Zhiyuan Ge, Rob L. Gawthorpe, Atle Rotevatn and Michel Bøgh ThomasAbstractStudies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)