- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 30, Issue 5, 2018
Basin Research - Volume 30, Issue 5, 2018
Volume 30, Issue 5, 2018
-
Detrital zircon and apatite constraints on depositional ages, sedimentation rates and provenance: Pliocene Productive Series, South Caspian Basin, Azerbaijan
AbstractWe used detrital zircon U/Pb geochronology and apatite (U–Th–Sm)/He thermochronology to better constrain depositional ages and sedimentation rates for the Pliocene Productive Series in Azerbaijan. U/Pb analysis of 1,379 detrital zircon grains and (U–Th–Sm)/He analysis of 57 apatite grains—from Kirmaky Valley and Yasamal Valley onshore sections, Absheron Peninsula—yielded two distinct sub‐populations: “young” Neogene grains and “old” Mesozoic, Palaeozoic and Proterozoic/Archean grains. The large numbers of Neogene age grains (around 10% of all grain ages) provided a new absolute age constraint on the maximum depositional age of the Lower Productive Series of 4.0 Myr. These “young” Neogene zircon grains most likely originated from volcanic ash falls sourced from the Lesser Caucasus or Talesh Mountains. In this paper we propose a timescale scenario using the maximum depositional age of the Productive Series from detrital zircon grain U/Pb constraints. Potential consequences and limitations of using apatite (U–Th–Sm)/He dating method in estimating maximum depositional ages are also discussed. These new age constraints for the Lower Productive Series gave much faster sedimentation rates than previously estimated: 1.3 km/Myr in the South Caspian Basin margin outcrops and up to 3.9 km/Myr in the basin centre. The sedimentation rates are one of the highest in comparison to other sedimentary basins and coeval to global increase in sedimentation rates 2–4 Myr. The older group of detrital zircon grains constitutes the majority of grains in all sample sets (~80%). These older ages are inferred to reflect the provenance of the Productive Series sediment. This sediment is interpreted to have been derived from the Proterozoic and Archean crystalline basement rocks and Phanerozoic cover of the East European Craton, Proterozoic/Palaeozoic rocks of the Ural Mountains and Mesozoic sedimentary rocks of the Greater Caucasus. This sediment was likely supplied from northerly sourced drainage that emptied into the South Caspian Basin.
-
Rapid vertical motions and formation of volcanic arc gaps: Plateau collision recorded in the forearc geological evolution (Costa Rica margin)
Authors Goran Andjić, Peter O. Baumgartner and Claudia Baumgartner‐MoraAbstractThe collision of bathymetric features with modern convergent margins has been investigated with the full range of tools used in geosciences. Hence, a comprehensive picture exists of the characteristic effects of collision events on the evolution of convergent margins. In contrast, much less studies documented past collisions of bathymetric features with convergent margins, as colliding features were generally lost to subduction. The arc‐trench system of southern Central America provides modern and past textbook examples of active margin interaction with incoming bathymetric reliefs. Here, we propose a synthesis which combines basin and terrane analysis of the forearc of northern Costa Rica and takes up the challenge of documenting past episodes of plateau accretion to the active margin. As illustrated in modern examples, our study shows that kilometric uplift of the overriding plate and termination of the volcanic arc activity are the most profound effects of colliding/accreting oceanic plateaus. Kilometric uplift of the forearc is documented by short‐lived (ca. 3 m.y.) occurrences of shallow‐water deposits in an overall deep‐water forearc record. These shallow deposits contain material reworked from underlying sedimentary and basement lithologies. The development of spatial gaps in arc volcanism is deduced from the transition from arc‐derived turbidites to pelagic sediments. Eventually, end of the collision event is evidenced by the subsidence of the whole forearc to deep‐water environments. Basin subsidence is accompanied or followed by renewed volcanic arc activity and coeval arc‐derived sedimentation, which may occur 1–7 m.y. after plateau collision. These past episodes of plateau accretion are archetypal for the following reasons: (a) they may be studied in outcrop, whereas most of the modern collisions of plateaus largely occur underwater; (b) no tectonic or metamorphic imprint has significantly complicated the forearc geological record; (c) the colliding feature and the sedimentary response to its collision are both preserved in the forearc geology; (d) they may be used as analogues for any setting where a bathymetric feature is suspected to have caused rapid forearc uplift and cessation of the volcanic arc activity.
-
Seismic geomorphology and origin of diagenetic geobodies in the Upper Cretaceous Chalk of the North Sea Basin (Danish Central Graben)
AbstractKilometre‐scale geobodies of diagenetic origin have been documented for the first time in a high‐resolution 3D seismic survey of the Upper Cretaceous chalks of the Danish Central Graben, North Sea Basin. Based on detailed geochemical, petrographic and petrophysical analyses, it is demonstrated that the geobodies are of an open‐system diagenetic origin caused by ascending basin fluids guided by faults and stratigraphic heterogeneities. Increased amounts of porosity‐occluding cementation, contact cement and/or high‐density/high‐velocity minerals caused an impedance contrast that can be mapped in seismic data, and represent a hitherto unrecognized, third type of heterogeneity in the chalk deposits in addition to the well‐known sedimentological and structural features. The distribution of the diagenetic geobodies is controlled by porosity/permeability contrasts of stratigraphic origin, such as hardgrounds associated with formation tops, and the feeder fault systems. One of these, the Top Campanian Unconformity at the top of the Gorm Formation, is particularly effective and created a basin‐wide barrier separating low‐porosity chalk below from high‐porosity chalk above (a Regional Porosity Marker, RPM). It is in particular in this upper high‐porosity unit (Tor and Ekofisk Formations) that the diagenetic geobodies occur, delineated by “Stratigraphy Cross‐cutting Reflectors” (SCRs) of which eight different types have been distinguished. The geobodies have been interpreted as the result of: (i) escaping pore fluids due to top seal failure, followed by local mechanical compaction of high‐porous chalks, paired with (ii) ascension of basinal diagenetic fluids along fault systems that locally triggered cementation of calcite and dolomite within the chalk, causing increased contact cements and/or reducing porosity. The migration pathway of the fluids is marked by the SCRs, which are the outlines of high‐density bodies of chalk nested in highly porous chalks. This study, thus, provides new insights into the 3D relationship between fault systems, fluid migration and diagenesis in chalks and has important applications for basin modelling and reservoir characterization.
-
Basin tectonic history and paleo‐physiography of the pelagian platform, northern Tunisia, using vitrinite reflectance data
AbstractConstraining the thermal, burial and uplift/exhumation history of sedimentary basins is crucial in the understanding of upper crustal strain evolution and also has implications for understanding the nature and timing of hydrocarbon maturation and migration. In this study, we use Vitrinite Reflectance (VR) data to elucidate the paleo‐physiography and thermal history of an inverted basin in the foreland of the Atlasic orogeny in Northern Tunisia. In doing so, it is the primary aim of this study to demonstrate how VR techniques may be applied to unravel basin subsidence/uplift history of structural domains and provide valuable insights into the kinematic evolution of sedimentary basins. VR measurements of both the onshore Pelagian Platform and the Tunisian Furrow in Northern Tunisia are used to impose constraints on the deformation history of a long‐lived structural feature in the studied region, namely the Zaghouan Fault. Previous work has shown that this fault was active as an extensional structure in Lower Jurassic to Aptian times, before subsequently being inverted during the Late Cretaceous Eocene Atlas I tectonic event and Upper Miocene Atlas II tectonic event. Quantifying and constraining this latter inversion stage, and shedding light on the roles of structural inheritance and the basin thermal history, are secondary aims of this study. The results of this study show that the Atlas II WNW‐ESE compressive event deformed both the Pelagian Platform and the Tunisian Furrow during Tortonian‐Messinian times. Maximum burial depth for the Pelagian Platform was reached during the Middle to Upper Miocene, i.e. prior to the Atlas II folding event. VR measurements indicate that the Cretaceous to Ypresian section of the Pelagian Platform was buried to a maximum burial depth of ~3 km, using a geothermal gradient of 30°C/km. Cretaceous rock samples VR values show that the hanging wall of the Zaghouan Fault was buried to a maximum depth of <2 km. This suggests that a vertical km‐scale throw along the Zaghouan Fault pre‐dated the Atlas II shortening, and also proves that the fault controlled the subsidence of the Pelagian Platform during the Oligo‐Miocene. Mean exhumation rates of the Pelagian Platform throughout the Messinian to Quaternary were in the order of 0.3 mm/year. However, when the additional effect of Tortonian‐Messinian folding is accounted for, exhumation rates could have reached 0.6–0.7 mm/year.
-
Episodic fluid flow as a trigger for Miocene‐Pliocene slope instability on the Utgard High, Norwegian Sea
More LessAbstractMass wasting is triggered on many continental slopes by a number of mechanisms, including seismic shaking, high sedimentation rates, the presence of weak geological units and gas hydrate dissociation. In this study, the morphology of a Late Miocene–Early Pliocene mass‐transport complex (MTC) on the Utgard High is unravelled and discussed in relation to possible trigger mechanisms. The approach used here includes 3D seismic interpretation and the analysis of variance attribute maps. The interpreted MTC is located on the crest and flanks of the Utgard High and is composed of three mass‐transport deposits with seismic characters varying from transparent and chaotic seismic facies at the base to slightly deformed layers composed of mounds and rafted blocks in the middle and chaotic to transparent reflections at the top. Lithologically, the MTC consists predominantly of claystone with high gamma ray and low density and resistivity values, demonstrating that the associated mounds represent remobilized ooze sediments. A vertical stack of six magmatic sills emplaced from 55.6 to 56.3 Ma into the Upper Cretaceous shales is interpreted at depths of 3,000–5,500 ms two‐way travel time (TWTT). In association with these magmatic sills are several hydrothermal vent complexes that interacted with the top MTC horizon, signifying that episodic and secondary fluid‐venting events might be the principal mechanism facilitating mass wasting in the study area. In addition, the remobilization of ooze sediments into mounds is hypothesized to be dependent on fluids and clayey layers. As a corollary of this work, the importance of relict and recurrent episodes of fluid flow in the Vøring Basin and their influence on the geotechnical integrity of the overburden and later mass wasting is established.
-
Drainage integration and sediment dispersal in active continental rifts: A numerical modelling study of the central Italian Apennines
AbstractProgressive integration of drainage networks during active crustal extension is observed in continental areas around the globe. This phenomenon is often explained in terms of headward erosion, controlled by the distance to an external base‐level (e.g. the coast). However, conclusive field evidence for the mechanism(s) driving integration is commonly absent as drainage integration events are generally followed by strong erosion. Based on a numerical modelling study of the actively extending central Italian Apennines, we show that overspill mechanisms (basin overfilling and lake overspill) are more likely mechanisms for driving drainage integration in extensional settings and that the balance between sediment supply vs. accommodation creation in fault‐bounded basins is of key importance. In this area drainage integration is evidenced by lake disappearance since the early Pleistocene and the transition from internal (endorheic) to external drainage, i.e. connected to the coast. Using field observations from the central Apennines, we constrain normal faulting and regional surface uplift within the surface process model CASCADE (Braun & Sambridge, 1997, Basin Research, 9, 27) and demonstrate the phenomenon of drainage integration, showing how it leads to the gradual disappearance of lakes and the transition to an interconnected fluvial transport system over time. Our model results show that, in the central Apennines, the relief generated through both regional uplift and fault‐block uplift produces sufficient sediment to fill the extensional basins, enabling overspill and individual basins to eventually become fluvially connected. We discuss field observations that support our findings and throw new light upon previously published interpretations of landscape evolution in this area. We also evaluate the implications of drainage integration for topographic development, regional sediment dispersal and offshore sediment supply. Finally, we discuss the applicability of our results to other continental rifts (including those where regional uplift is absent) and the importance of drainage integration for transient landscape evolution.
-
Structural controls on non fabric‐selective dolomitization within rift‐related basin‐bounding normal fault systems: Insights from the Hammam Faraun Fault, Gulf of Suez, Egypt
AbstractFault‐controlled dolostone bodies have been described as potential hydrocarbon‐bearing reservoirs. Numerous case studies have described the shape and size of these often non fabric selective dolostone bodies within the vicinity of crustal‐scale lineaments, usually from Palaeozoic or Mesozoic carbonate platforms, which have undergone one or more phases of burial and exhumation. There has been little attention paid, however, to fault‐strike variability in dolostone distribution or the preferential localization of these bodies on particular faults. This study focuses on dolostone bodies adjacent to the Hammam Faraun Fault (HFF), Gulf of Suez. This crustal‐scale normal fault was activated in the Late Oligocene, coincident with the onset of extension within the Suez Rift. Dolomitization in the prerift Eocene Thebes Formation occurred in the immediate footwall of the HFF forming two massive, non facies selective dolostone bodies, ca. 500 m wide. Facies‐controlled tongues of dolostone on the margins of the massive dolostone bodies extend for up to 100 m. The geochemical signature of the dolostone bodies is consistent with replacement by Miocene seawater, contemporaneous with the rift climax and localization of strain along the HFF. A conceptual model of dolomitization from seawater that circulated within the HFF during the rift climax is presented. Seawater was either directly drawn down the HFF or circulated from the hanging wall basin via a permeable aquifer towards the HFF. The lateral extent of the massive dolostone bodies was controlled by pre‐existing HFF‐parallel fracture corridors on the outer margins of the damage zone of the fault. The behaviour of these fracture corridors alternated between acting as barriers to fluid flow before rupture and acting as flow conduits during or after rupture. Multiple phases of dolomitization and recrystallization during the ca. 10 Ma period in which dolomitization occurred led to mottled petrographical textures and wide‐ranging isotopic signatures. The localization of dolomitization on the HFF is interpreted to reflect its proximity to a rift accommodation zone which facilitated vertical fluid flow due to perturbed and enhanced stresses during fault interaction. It is possible that the presence of jogs along the strike of the fault further focused fluid flux. As such, it is suggested that the massive dolostones described in this study provide a window into the earliest stages of formation of fault‐controlled hydrothermal dolostone bodies, which could have occurred in other areas and subsequently been overprinted by more complex diagenetic and structural fabrics.
-
Morphometric analysis of sediment conduits on a bathymetric high: Implications for palaeoenvironment and hydrocarbon prospectivity
AbstractCanyons and other sediment conduits are important components of the deep‐water environment and are the main pathways for sediment transport from the shelf to the basin floor. Using 3‐D and 2‐D seismic reflection data, seismic facies and statistical morphometric analyses, this study showed the architectural evolution of five canyons, two slide scars and four gullies on the southern part of the Loppa High, Barents Sea. Morphometric parameters such as thalweg depth (lowest point on a conduit's base), wall depth (middle point), height, width and base width, sinuosity, thalweg gradient, aspect ratio (width/height) and cross‐sectional area of the conduits were measured at intervals of 250‐m perpendicular to the conduits’ pathways. Our results show that the canyons and slide scars in the study area widen down slope, whereas the gullies are narrow and short with uniform widths. The sediment conduits in the study area evolved in three stages. The first stage is correlated with a time when erosion and bypass were dominant in the conduits, and sediment transferred to the basin in the south. The second stage occurred when basin subsidence was prevalent, and a widespread fine‐grained sequence was deposited as a drape blanketing the canyons and other conduits. A final stage occurred when uplift and glacial erosion configured the entire southern Loppa High into an area of denudation. Our work demonstrates that the morphometric parameters of the canyons, slide scars and gullies generally have increasing linear trends with down‐slope distance, irrespective of their geometries. The morphometric analysis of the sediment conduits in the study area has wider applications for understanding depositional processes, reservoir distribution and petroleum prospectivity in frontier basins.
-
Architecture, deformation style and petrophysical properties of growth fault systems: the Late Triassic deltaic succession of southern Edgeøya (East Svalbard)
AbstractThe Late Triassic outcrops on southern Edgeøya, East Svalbard, allow a multiscale study of syn‐sedimentary listric growth faults located in the prodelta region of a regional prograding system. At least three hierarchical orders of growth faults have been recognized, each showing different deformation mechanisms, styles and stratigraphic locations of the associated detachment interval. The faults, characterized by mutually influencing deformation envelopes over space‐time, generally show SW‐ to SE‐dipping directions, indicating a counter‐regional trend with respect to the inferred W‐NW directed progradation of the associated delta system. The down‐dip movement is accommodated by polyphase deformation, with the different fault architectural elements recording a time‐dependent transition from fluidal‐hydroplastic to ductile‐brittle deformation, which is also conceptually scale‐dependent, from the smaller‐ (3rd order) to the larger‐scale (1st order) end‐member faults respectively. A shift from distributed strain to strain localization towards the fault cores is observed at the meso to microscale (<1 mm), and in the variation in petrophysical parameters of the litho‐structural facies across and along the fault envelope, with bulk porosity, density, pore size and microcrack intensity varying accordingly to deformation and reworking intensity of inherited structural fabrics. The second‐ and third‐order listric fault nucleation points appear to be located above blind fault tip‐related monoclines involving cemented organic shales. Close to planar, through‐going, first‐order faults cut across this boundary, eventually connecting with other favourable lower‐hierarchy fault to create seismic‐scale fault zones similar to those imaged in the nearby offshore areas. The inferred large‐scale driving mechanisms for the first‐order faults are related to the combined effect of tectonic reactivation of deeper Palaeozoic structures in a far field stress regime due to the Uralide orogeny, and differential compaction associated with increased sand sedimentary input in a fine‐grained, water‐saturated, low‐accommodation, prodeltaic depositional environment. In synergy to this large‐scale picture, small‐scale causative factors favouring second‐ and third‐order faulting seem to be related to mechanical‐rheological instabilities related to localized shallow diagenesis and liquidization fronts.
Volumes & issues
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)
Most Read This Month
