- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 32, Issue 1, 2020
Basin Research - Volume 32, Issue 1, 2020
Volume 32, Issue 1, 2020
-
-
Low resistivity zones at contacts of igneous intrusions emplaced in organic‐rich formations and their implications on fluid flow and petroleum systems: A case study in the northern Neuquén Basin, Argentina
[Low resistivity zones identified at contacts of sill intrusions emplaced in organic‐rich shale formations have major implications in fluid flow and petroleum systems.
Igneous sills and laccoliths emplaced in sedimentary basins may significantly impact petroleum systems, both positively and negatively. Igneous intrusions provide heat to maturate regionally immature organic‐rich host rocks, act as fractured reservoirs hosting commercial accumulations of hydrocarbons, and form structures affecting fluid flow and trapping at different scales. Nevertheless, the petrophysical implications of igneous intrusions on their host rock are poorly known. In this study, we analyse 200 wells in the Río Grande Valley oil field, Neuquén basin, Argentina, where the main reservoirs are in fractured igneous sills. This dataset represents a globally unique possibility to characterize the igneous–host rock interaction using both wireline logs and core material. We identify a systematic Contact Low Resistivity Zone (CLRsZ) at both the upper and lower contacts of the sills emplaced in the organic‐rich Vaca Muerta and Agrio Formations. We characterize the nature of these CLRsZ and their petrophysical properties by integrating resistivity and gamma ray well logs, petrographic analyses, petrophysical tests and geochemical analyses. The low resistivity signal of the CLRsZ is dominantly carried by massive‐sulphide deposits, mainly pyrite, observed both in the host rock and the chilled margin of the sills. Well log images and porosity‐permeability analysis on core plugs show that both the sills and their associated CLRsZ can act as carrier for fluid flow and reservoir for hydrocarbons storage. The thickness of the upper and lower CLRsZ correlates linearly with the thickness of the sill, and the volume of both the upper and lower CLRsZ represents ca. 40% with respect to the volume of their associated sill. The thickness of the CLRsZ represents ca. 13% of the thickness of contact aureole induced by the sills. In the CLRsZ, a great proportion of kerogen was transformed to hydrocarbon, so that CLRsZ were restricted to the innermost contact aureole of the sills. Our results show that the CLRsZ can have major implications on fluid flow and should be considered in reservoir models in volcanic basins hosting sills emplaced in organic‐rich formations.
]
-
-
-
Anticosti foreland basin offshore of western Newfoundland: Concealed record of northern Appalachian orogen development
Authors Shawna E. White, John W. F. Waldron and Nicholas B. HarrisAbstractThe Anticosti Basin, largely hidden beneath the Gulf of St. Lawrence, includes foreland basin successions that record multiple tectonic events associated with the Ordovician to Devonian evolution of the northern Appalachian orogen. Due to the lack of well ties and minimal onshore exposure, geophysical data must be used in mapping the offshore stratigraphy. Outcropping geologic boundaries are tied to magnetic lineaments that parallel stratigraphy. These lineaments are correlated with reflections on seismic profiles in order to interpret the subsurface. Seismic isochron maps for successive basin development episodes display differences in geometry, implying that orogenic loading varied through time. The geometry and subsidence rates recorded by the Middle Ordovician Goose Tickle Group imply that it formed in a pro‐arc setting associated with loading during arc‐continent collision that was most intense in the northern Newfoundland Appalachians. The geometry and subsidence recorded by the overlying Long Point Group imply pro‐arc loading by Taconian allochthons in the Québec segment of the orogen. Diachronous subduction polarity reversal along the margin placed the Long Point Group in a combined retro‐arc and pro‐arc setting, comparable to that experienced by parts of the north Australian margin at the present day. The uppermost Silurian to Lower Devonian Clam Bank Formation and Lower Devonian Red Island Road Formation represent foreland basin successions associated with the later Salinian and Acadian orogenies. Their consistent thickness implies a broad, shallow basin, suggesting that the lithosphere was cooler and stronger than during earlier subsidence, and are consistent with a retro‐arc setting.
-
-
-
Estimating uncertainties on net erosion from well‐log porosity data
Authors A. Licciardi, K. Gallagher and S. A. ClarkAbstractEstimating the amount of erosion experienced by a sedimentary basin during its geological history plays a key role in basin modelling. In this paper, we present a novel probabilistic approach to estimate net erosion from porosity–depth data from a single well. Our approach uses a Markov chain Monte Carlo algorithm which readily allows us to deal with imprecise knowledge of the lithology‐dependent compaction parameters in a joint inversion scheme using multiple lithologies. The results using synthetic data highlight the advantages of our approach over conventional techniques for net erosion estimation: (a) uncertainties on compaction parameters can be effectively mapped into a probabilistic solution for net erosion; (b) posterior uncertainties are easy to quantify; (c) the joint inversion scheme can automatically reconcile porosity data from different lithologies. Our results also underscore the critical role of prior assumptions on controlling the retrieved estimates for net erosion. Using real data from a well in the Barents Sea, we simulate three possible scenarios of variable prior assumptions on compaction parameters to demonstrate the general applicability of our approach. Strong prior assumptions on the compaction parameters led to unrealistic estimates of net erosion for the target well, indicating the assumptions are probably inappropriate. Our preferred strategy for this dataset is to include additional data to constrain the normal compaction trend of the sediments. This provides a net erosion estimate for the target well of about 2300 m with a standard deviation of 140 m which is in line with previous studies. Finally, we discuss potential guidelines to deal with real applications in which data from normally compacted sediments are not available. One is to use our algorithm as a hypothesis‐testing tool to evaluate the results under a large set of assumed compaction parameters. A second is to infer compaction parameters and net erosion simultaneously from the target well porosity data. Although appealing and successful with synthetic data, this strategy provides results which are strongly dependent on the calibration data and the geological history of the sediments sampled by the target well.
-
-
-
Three‐dimensional forward stratigraphic modelling of the sedimentary architecture of meandering‐river successions in evolving half‐graben rift basins
Authors Na Yan, Luca Colombera and Nigel P. Mountney[Schematic diagram of an evolving half‐graben basin in a fluvial‐dominated continental setting.
The spatial organisation of meandering‐river deposits varies greatly within the sedimentary fills of rift basins, depending on how differential rates of fault propagation and subsidence interplay with autogenic processes to drive changes in fluvial channel‐belt position and rate of migration, avulsion frequency and mechanisms of meander‐bend cut off. This set of processes fundamentally influences stacking patterns of the accumulated successions. Quantitative predictions of the spatio‐temporal evolution and internal architecture of meandering fluvial deposits in such tectonically active settings remain limited. A numerical forward stratigraphic model—the Point‐Bar Sedimentary Architecture Numerical Deduction (PB‐SAND)—is applied to examine relationships between differential rates of subsidence and resultant fluvial channel‐belt migration, reach avulsion and channel‐deposit stacking in active, fault‐bounded half‐grabens. The model is used to reconstruct and predict the complex morphodynamics of fluvial meanders, their generated channel belts, and the associated lithofacies distributions that accumulate as heterogeneous fluvial successions in rift settings, constrained by data from seismic images and outcrop successions. The 3D modelling outputs are used to explore sedimentary heterogeneity at various spatio‐temporal scales. Results show how the connectivity of sand‐prone geobodies can be quantified as a function of subsidence rate, which itself decreases both along and away from the basin‐bounding fault. In particular, results highlight the spatial variability in the size and connectedness of sand‐prone geobodies that is seen in directions perpendicular and parallel to the basin axis, and that arises as a function of the interaction between spatial and temporal variations in rates of accommodation generation and fault‐influenced changes in river morphodynamics. The results have applied significance, for example, to both hydrocarbon exploration and assessment of groundwater aquifers. The expected greatest connectivity of fluvial sandbody in a half‐graben is primarily determined by the complex interplay between the frequency and rate of subsidence, the style of basin propagation, the rates of migration of channel belts, the frequency of avulsion and the proportion and spatial distribution of variably sand‐prone channel and bar deposits.
]
-
-
-
Hydrothermal fluid flow associated to the extensional evolution of the Adriatic rifted margin: Insights from the pre‐ to post‐rift sedimentary sequence (SE Switzerland, N ITALY)
AbstractThis paper investigates the hydrothermal fluid circulation that was linked to the extensional evolution of the Adriatic rifted margin during the Jurassic opening of the Alpine Tethys. Remnants of this rifted margin are spectacularly preserved in SE Switzerland and N Italy. Five study areas were chosen ranging from the former proximal to the most distal part of the margin. We demonstrate an intimate link between Jurassic extensional tectonics and fluid activity affecting the pre‐ to early post‐rift sedimentary sequences. Nature, composition and origin of fluids are constrained by a multidisciplinary approach based on field observations and including geochemical (O‐C, Sr, He isotopes, U‐Pb datings, fluid inclusion microthermometry) and petrological methods. Several fluid‐related diagenetic products and processes such as dolomitization, veining, hydraulic brecciation, and silicification can be recognized. It appears that different paleogeographic settings and different stratigraphic levels document distinct phases of fluid activity. The fluids reached temperatures of up to 150°C near paleo‐seafloor. They were enriched in 18O, had high 87Sr/86Sr and low 3He/4He ratios, documenting a strong interaction between seawater and a granitic basement. Many lines of evidence point to the occurrence of over‐pressured fluids and long‐lasting fluid circulation due to fault‐valve mechanisms and high thermal gradients. Two main stages with different fluid chemistry can be recognized: (1) a carbonate‐rich stage that developed during the stretching phases and was linked to high‐angle normal faulting, and (2) a silica‐rich stage occurring during late rift exhumation of crustal and mantle rocks in the distal domains in the presence of detachment faults and high thermal gradients. This paper provides, for the first time, a large and robust characterization of fluid–rock interactions occurring during rifting along an almost complete section across a magma‐poor rifted margin.
-
-
-
Evolution of drainage, sediment‐flux and fluvio‐deltaic sedimentary systems response in hanging wall depocentres in evolving non‐marine rift basins: Paleogene of Raoyang Sag, Bohai Bay Basin, China
Authors Hehe Chen, Xiaomin Zhu, Lesli J. Wood and Ruisheng ShiAbstractThe dynamics of sediment feeding into rift basins and the geomorphologic nature of source areas are critical elements in understanding the evolution of rifted basins. This study integrates seismic, well and geochronologic data on the western dipslope of the Raoyang Sag, a rift associated sub‐basin to the larger Bohai Bay Basin of China to define the history of drainage development for the basin and to assess the sedimentologic response to drainage evolution events. In the Paleogene‐age Lixian Slope, as indicated by paleo‐drainage configuration, progradational seismic geometries, compositional maturity and zircon‐tourmaline‐rutile maturity index trends, three drainages; the paleo‐Daqing River, paleo‐Tang River and paleo‐Dasha River drainages were feeding three closely spaced hanging wall deltaic depositional systems; Delta A fed from the northwest, Delta B fed from the west and Delta C fed from the southwest, respectively. From the late Eocene to early Oligocene, a decrease in sediment‐flux into the hanging wall is documented and petrographic analysis is used to link these changes to stream‐capture in the upstream catchment of the Daqing River. This change is coupled with morphologic changes in the geometries of Deltas A and C, both of which show decreasing deltaic areas, changes in lobe geometry and changes in distributary channel sizes. In addition, the progradational direction of Delta C changes from perpendicular‐to‐the‐rift axis to prograding oblique‐to‐the‐rift axis. It is apparent that the progradation and retrogradational changes in rift margin deltas do not happen in isolation, but such changes can affect growth and progradation direction in adjacent deltas. This work shows that the decrease in sediment‐flux, caused by a drainage capture, will result in a decrease in distributary channel size and delta size and may result in upstream deltas taking advantage of such decreasing confinement to prograde more obliquely to the rift axis.
-
-
-
Deeply buried ancient volcanoes control hydrocarbon migration in the South China Sea
Authors Qiliang Sun, Christopher A. L. Jackson, Craig Magee and Xinong Xie[AbstractSeismic reflection data image now‐buried and inactive volcanoes, both onshore and along the submarine portions of continental margins. However, the impact that these volcanoes have on later, post‐eruption fluid flow events (e.g., hydrocarbon migration and accumulation) is poorly understood. Determining how buried volcanoes and their underlying plumbing systems influence subsurface fluid or gas flow, or form traps for hydrocarbon accumulations, is critical to de‐risk hydrocarbon exploration and production. Here, we focus on evaluating how buried volcanoes affect the bulk permeability of hydrocarbon seals, and channel and focus hydrocarbons. We use high‐resolution 3D seismic reflection and borehole data from the northern South China Sea to show how ca. <10 km wide, ca. <590 m high Miocene volcanoes, buried several kilometres (ca. 1.9 km) below the seabed and fed by a sub‐volcanic plumbing system that exploited rift‐related faults: (i) acted as long‐lived migration pathways, and perhaps reservoirs, for hydrocarbons generated from even more deeply buried (ca. 8–10 km) source rocks; and (ii) instigated differential compaction and doming of the overburden during subsequent burial, producing extensional faults that breached regional seal rocks. Considering that volcanism and related deformation are both common on many magma‐rich passive margins, the interplay between the magmatic products and hydrocarbon migration documented here may be more common than currently thought. Our results demonstrate that now‐buried and inactive volcanoes can locally degrade hydrocarbon reservoir seals and control the migration of hydrocarbon‐rich fluids and gas. These fluids and gases can migrate into and be stored in shallower reservoirs, where they may then represent geohazards to drilling and impact slope stability.
,This study demonstrates that now‐buried and inactive volcanoes can locally degrade hydrocarbon reservoir seals and control the migration of hydrocarbon‐rich fluids and gas.
-
-
-
Initiation and early evolution of a forearc basin: Georgia Basin, Canada
AbstractThe lower Nanaimo Group was deposited in the (forearc) Georgia Basin, Canada and records the basin's initiation and early depositional evolution. Nanaimo Group strata are subdivided into 11 lithostratigraphic units, which are identified based on lithology, paleontology, texture and position relative to both the basal nonconformity and to each other. Significant topography on the basal nonconformity, however, has resulted in assignment of lithostratigraphic units that are not time correlative, and hence, cannot reliably be used to accurately reconstruct basin evolution. Herein, we present a sequence stratigraphic framework for lower Nanaimo Group strata in the Comox Sub‐Basin (northern Georgia Basin) that integrates both facies analysis and maximum depositional ages (MDAs) derived from detrital zircon. This stratigraphic framework is used to define significant sub‐basin‐wide surfaces that bound depositional units and record the evolution of the basin during its early stages of development. Seven distinct depositional phases are identified in the lower 700 m of the lower Nanaimo Group. Depositional phases are separated by marine flooding surfaces, regressive surfaces, or disconformities. The overall stratigraphy reflects net transgression manifested as an upwards transition from braided fluvial conglomerates to marine mudstones. Transgression was interrupted by periods of shoreline progradation, and both facies analysis and MDAs reveal a disconformity in the lowermost part of the Nanaimo Group in the Comox Sub‐Basin. Stratigraphic reconstruction of the Comox Sub‐Basin reveals two dominant depocenters (along depositional strike) for coarse clastics (sandstones and conglomerates) during early development of the Georgia Basin. The development and position of these depocenters is attributed to subduction/tectonism driving both subsidence in the north‐northwest and uplift in the central Comox Sub‐Basin. Our work confirms that in its earliest stages of development, the Georgia Basin evolved from an underfilled, ridged forearc basin that experienced slow and stepwise drowning to a shoal‐water ridged forearc basin that experienced rapid subsidence. We also propose that the Georgia Basin is a reasonable analogue for ridged forearc basins globally, as many ridged forearcs record similar depositional histories during their early evolution.
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)