- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 33, Issue 1, 2021
Basin Research - Volume 33, Issue 1, 2021
Volume 33, Issue 1, 2021
- ISSUE INFORMATION
-
- ORIGINAL ARTICLES
-
-
-
Basin‐scale fluvial correlation and response to the Tethyan marine transgression: An example from the Triassic of central Spain
Authors Maximilian Franzel, Stuart J. Jones, Neil Meadows, Mark B. Allen, Ken McCaffrey and Tim Morgan[AbstractThe relationships between large‐scale depositional processes and the stratigraphic record of alluvial systems, e.g. the origin and distribution of channel stacking patterns, changing architecture and correlation of strata, are still relatively poorly understood, in contrast to marine systems. We present a study of the Castillian Branch of the Permo‐Triassic Central Iberian Basin, north‐eastern Spain, using chemostratigraphy and a detailed sedimentological analysis to correlate the synrift Triassic fluvial sandstones for ~80 km along the south‐eastern basin margin. This study investigates the effects of Middle Triassic (Ladinian) Tethyan marine transgression on fluvial facies and architecture. Chemostratigraphy identifies a major, single axially flowing fluvial system lasting from the Early to Middle Triassic (~10 Ma). The fluvial architecture comprises basal conglomerates, followed by amalgamated sandstones and topped by floodplain‐isolated single‐ or multi‐storey amalgamated sandstone complexes with a total thickness up to ~1 km. The Tethyan marine transgression advanced into the basin with a rate of 0.04–0.02 m/year, and is recorded by a transition from the fluvial succession to a series of maximum flooding surfaces characterised by marginal marine clastic sediments and sabkha evaporites. The continued, transgression led to widespread thick carbonate deposition infilling the basin and recording the final stage of synrift to early‐post‐rift deposition. We identify the nonmarine to marine transition characterised by significant changes in the Buntsandstein succession with a transition from a predominantly tectonic‐ to a climatically driven fluvial system. The results have important implications for the temporal and spatial prediction of fluvial architecture and their transition during a marine transgression.
,
-
-
-
-
Drainage response to Arabia–Eurasia collision: Insights from provenance examination of the Cyprian Kythrea flysch (Eastern Mediterranean Basin)
Authors Uri Shaanan, Dov Avigad, Navot Morag, Talip Güngör and Axel Gerdes[AbstractThe Cenozoic geodynamics of the north‐eastern Mediterranean Basin have been dominated by the subduction of the African Plate under Eurasia. A trench‐parallel crustal‐scale thrust system (Misis–Kyrenia Thrust System) dissects the southern margin of the overriding plate and forms the structural grain and surface expression of northern Cyprus. Late Eocene to Miocene flysch of the Kythrea (Değirmenlik) Group is exposed throughout northern Cyprus, both at the hanging‐wall and foot‐wall of the thrust system, permitting access to an extensive Cenozoic sedimentary record of the basin. We report the results of a combined examination of detrital zircon and rutile U–Pb geochronology (572 concordant ages), coupled with Th/U ratios, Hf isotopic data and quantitative assessment of grain morphology of detrital zircon from four formations (5 samples) from the Kythrea flysch. These data provide a line of independent evidence for the existence of two different sediment transportation systems that discharged detritus into the basin between the late Eocene and late Miocene. Unique characteristics of each transport system are defined and a sediment unmixing calculation is demonstrated and explained. The first system transported almost exclusively North Gondwana‐type, Precambrian‐aged detrital zircon sourced from siliciclastic rock units in southern Anatolia. A different drainage system is revealed by the middle to late Miocene flysch sequence that is dominated by Late Cretaceous–Cenozoic‐aged detrital zircon, whose age range is consistent with the magmatic episodicity of southeast Anatolia, along the Arabia–Eurasia suture zone. Deposition of these late Miocene strata took place thereupon closure of the Tethyan Seaway and African–Eurasian faunal exchange, and overlap in time with a pronounced uplift of eastern Anatolia. Our analytical data indicate the onset of prominent suture‐parallel sediment transport from the collision zone of south‐eastern Anatolia into the Kyrenia Range of northern Cyprus, marking the drainage response to the continental collision between Arabia and Eurasia.
,A combined examination of detrital zircon and rutile U–Pb geochronology, coupled with Th/U ratios, Hf isotopic data and quantitative assessment of grain morphology of detrital zircon from the Kythrea flysch (northern Cyprus) provides a line of independent evidence for the existence of two different sediment transportation systems that discharged detritus from southern and southeast Anatolia into the northeastern Mediterranean Basin between the late Eocene and late Miocene. Unique characteristics of each transport system are defined and a sediment unmixing calculation is demonstrated and explained. The analytical data indicate the onset of prominent suture‐parallel sediment transport from the collision zone of south‐eastern Anatolia to northern Cyprus, marking the drainage response to the continental collision between Arabia and Eurasia.
-
-
-
Evaluating alluvial stratigraphic response to cyclic and non‐cyclic upstream forcing through process‐based alluvial architecture modelling
More Less[AbstractFormation of alluvial stratigraphy is controlled by autogenic processes that mix their imprints with allogenic forcing. In some alluvial successions, sedimentary cycles have been linked to astronomically‐driven, cyclic climate changes. However, it remains challenging to define how such cyclic allogenic forcing leads to sedimentary cycles when it continuously occurs in concert with autogenic forcing. Accordingly, we evaluate the impact of cyclic and non‐cyclic upstream forcing on alluvial stratigraphy through a process‐based alluvial architecture model, the Karssenberg and Bridge (2008) model (KB08). The KB08 model depicts diffusion‐based sediment transport, erosion and deposition within a network of channel belts and associated floodplains, with river avulsion dependent on lateral floodplain gradient, flood magnitude and frequency, and stochastic components. We find cyclic alluvial stratigraphic patterns to occur when there is cyclicity in the ratio of sediment supply over water discharge (Qs/Qw ratio), in the precondition that the allogenic forcing has sufficiently large amplitudes and long, but not very long, wavelengths, depending on inherent properties of the modelled basin (e.g. basin subsidence, size, and slope). Each alluvial stratigraphic cycle consists of two phases: an aggradation phase characterized by rapid sedimentation due to frequent channel shifting and a non‐deposition phase characterized by channel belt stability and, depending on Qs/Qw amplitudes, incision. Larger Qs/Qw ratio amplitudes contribute to weaker downstream signal shredding by stochastic components in the model. Floodplain topographic differences are found to be compensated by autogenic dynamics at certain compensational timescales in fully autogenic runs, while the presence of allogenic forcing clearly impacts the compensational stacking patterns.
,Alluvial stratigraphic responses to non‐cyclic (Scenario NC) and cyclic (Scenarios C10 and C20) upstream climate forcing.
-
-
-
Cretaceous continental margin evolution revealed using quantitative seismic geomorphology, offshore northwest Africa
Authors Max Casson, Gérôme Calvès, Mads Huuse, Ben Sayers and Jonathan Redfern[AbstractThe application of high‐resolution seismic geomorphology, integrated with lithological data from the continental margin offshore The Gambia, northwest Africa, documents a complex tectono‐stratigraphic history through the Cretaceous. This reveals the spatial‐temporal evolution of submarine canyons by quantifying the related basin depositional elements and providing an estimate of intra‐ versus extra‐basinal sediment budget. The margin developed from the Jurassic to Aptian as a carbonate escarpment. Followed by, an Albian‐aged wave‐dominated delta system that prograded to the palaeo‐shelf edge. This is the first major delivery of siliciclastic sediment into the basin during the evolution of the continental margin, with increased sediment input linked to exhumation events of the hinterland. Subaqueous channel systems (up to 320 m wide) meandered through the pro‐delta region reaching the palaeo‐shelf edge, where it is postulated they initiated early submarine canyonisation of the margin. The canyonisation was long‐lived (ca. 28 Myr) dissecting the inherited seascape topography. Thirteen submarine canyons can be mapped, associated with a Late Cretaceous‐aged regional composite unconformity (RCU), classified as shelf incised or slope confined. Major knickpoints within the canyons and the sharp inflection point along the margin are controlled by the lithological contrast between carbonate and siliciclastic subcrop lithologies. Analysis of the base‐of‐slope deposits at the terminus of the canyons identifies two end‐member lobe styles, debris‐rich and debris‐poor, reflecting the amount of carbonate detritus eroded and redeposited from the escarpment margin (blocks up to ca. 1 km3). The vast majority of canyon‐derived sediment (97%) in the base‐of‐slope is interpreted as locally derived intra‐basinal material. The average volume of sediment bypassed through shelf‐incised canyons is an order of magnitude higher than the slope‐confined systems. These results document a complex mixed‐margin evolution, with seascape evolution, sedimentation style and volume controlled by shelf‐margin collapse, far‐field tectonic activity and the effects of hinterland rejuvenation of the siliciclastic source.
,
-
-
-
Architecture of the evaporite accumulation and salt structures dynamics in Tiddlybanken Basin, southeastern Norwegian Barents Sea
Authors Muhammad Hassaan, Jan I. Faleide, Roy H. Gabrielsen and Filippos Tsikalas[An extensive, reprocessed two‐dimensional (2D) seismic data set was utilized together with available well data to study the Tiddlybanken Basin in the southeastern Norwegian Barents Sea, which is revealed to be an excellent example of base salt rift structures, evaporite accumulations and evolution of salt structures. Late Devonian–early Carboniferous NE‐SW regional extensional stress affected the study area and gave rise to three half‐grabens that are separated by a NW‐SE to NNW‐SSE trending horst and an affiliated interference transfer zone. The arcuate nature of the horst is believed to be the effect of pre‐existing Timanian basement grain, whereas the interference zone formed due to the combined effect of a Timanian (basement) lineament and the geometrical arrangement of the opposing master faults. The interference transfer zone acted as a physical barrier, controlling the facies distribution and sedimentary thickness of three‐layered evaporitic sequences (LES). During the late Triassic, the northwestern part of a salt wall was developed due to passive diapirism and its evolution was influenced by halite lithology between the three‐LES. The central and southeastern parts of the salt wall did not progress beyond the pedestal stage due to lack of halite in the deepest evaporitic sequence. During the Triassic–Jurassic transition, far‐field stresses from the Novaya Zemlya fold‐and‐thrust belt reactivated the pre‐salt Carboniferous rift structures. The reactivation led to the development of the Signalhorn Dome, rejuvenated the northwestern part of the salt wall and affected the sedimentation rates in the southeastern broad basin. The salt wall together with the Signalhorn Dome and the Carboniferous pre‐salt structures were again reactivated during post‐Early Cretaceous, in response to regional compressional stresses. During this main tectonic inversion phase, the northwestern and southeastern parts of the salt wall were rejuvenated; however, salt reactivation was minimized towards the interference transfer zone beneath the centre of the salt wall.
]
-
-
-
Post‐orogenic sediment drape in the Northern Pyrenees explained using a box model
Authors Thomas Bernard, Hugh D. Sinclair, Mark Naylor, Frédéric Christophoul and Mary Ford[Schematic representation of a mountain range and foreland basin system for four time frames and highlight continental sediment accumulation that can drape over the frontal portions of the thrust wedge.
The transition to a post‐orogenic state in mountain ranges has been identified by a change from active subsidence to isostatic rebound of the foreland basin. However, the nature of the interplay between isostatic rebound and sediment supply, and their impact on the topographic evolution of a range and foreland basin during this transition, has not been fully investigated. Here, we use a box model to explore the syn‐ to post‐orogenic evolution of foreland basin/thrust wedge systems. Using a set of parameter values that approximate the northern Pyrenees and the neighbouring Aquitaine foreland basin, we evaluate the controls on sediment drape over the frontal parts of the retro‐wedge following cessation of crustal thickening. Conglomerates preserved at approximately 600‐m elevation, which is ~ 300 m above the present mountain front in the northern Pyrenees are ca. 12 Ma, approximately 10 Myrs younger than the last evidence of crustal thickening in the wedge. Using the model, this post‐orogenic sediment drape is explained by the combination of a sustained, high sediment influx from the range into the basin relative to the efflux out of the basin, combined with cessation of the generation of accommodation space through basin subsidence. Post‐orogenic sediment drape is considered a generic process that is likely to be responsible for elevated low‐gradient surfaces and preserved remnants of continental sedimentation draping the outer margins of the northern Pyrenean thrust wedge.
]
-
-
-
Extensional tectonics during the Tyrrhenian back‐arc basin formation and a new morpho‐tectonic map
Authors Maria F. Loreto, Nevio Zitellini, César R. Ranero, Camilla Palmiotto and Manel PradaAbstractWe present a new tectonic map focused upon the extensional style accompanying the formation of the Tyrrhenian back‐arc basin. Our basin‐wide analysis synthetizes the interpretation of vintage multichannel and single‐channel seismic profiles, integrated with modern seismic images, P‐wave velocity models, and high‐resolution morpho‐bathymetric data. Four distinct evolutionary phases of the Tyrrhenian back‐arc basin opening are further constrained, redefining the initial opening to Langhian/Serravallian time. Listric and planar normal faults and their conjugates bound a series of horst and graben, half‐graben and triangular basins. Distribution of extensional faults, active throughout the basin since Middle Miocene, allows us to define an arrangement of faults in the northern/central Tyrrhenian mainly related to a pure shear which evolved to a simple shear opening. At depth, faults accommodate over a Ductile‐Brittle Transitional zone cut by a low‐angle detachment fault. In the southern Tyrrhenian, normal, inverse and transcurrent faults appear to be related to a large shear zone located along the continental margin of the northern Sicily. Extensional style variation throughout the back‐arc basin combined with wide‐angle seismic velocity models allows to explore the relationships between shallow deformation, faults distribution throughout the basin, and crustal‐scale processes as thinning and exhumation.
-
-
-
Salt tectonics in a double salt‐source layer setting (Eastern Persian Gulf, Iran): Insights from interpretation of seismic profiles and sequential cross‐section restoration
Authors Jafar Hassanpour, Ali Yassaghi, Josep A. Muñoz and Salman JahaniAbstractSalt tectonics in the Eastern Persian Gulf (Iran) is linked to a unique salt‐bearing system involving two overlapping ‘autochthonous’ mobile source layers, the Ediacaran–Early Cambrian Hormuz Salt and the Late Oligocene–Early Miocene Fars Salt. Interpretations of reflection seismic profiles and sequential cross‐section restorations are presented to decipher the evolution of salt structures from the two source layers and their kinematic interaction on the style of salt flow. Seismic interpretations illustrate that the Hormuz and Fars salts started flowing in the Early Palaeozoic (likely Cambrian) and Early Miocene, respectively, shortly after their deposition. Differential sedimentary loading (downbuilding) and subsalt basement faults initiated and localized the flow of the Hormuz Salt and the related salt structures. The resultant diapirs grew by passive diapirism until Late Cretaceous, whereas the pillows became inactive during the Mesozoic after a progressive decline of growth in the Late Palaeozoic. The diapirs and pillows were then subjected to a Palaeocene–Eocene contractional deformation event, which squeezed the diapirs. The consequence was significant salt extrusion, leading to the development of allochthonous salt sheets and wings. Subsequent rise of the Hormuz Salt occurred in wider salt stocks and secondary salt walls by coeval passive diapirism and tectonic shortening since Late Oligocene. Evacuation and diapirism of the Fars Salt was driven mainly by differential sedimentary loading in annular and elongate minibasins overlying the salt and locally by downslope gliding around pre‐existing stocks of the Hormuz Salt. At earlier stages, the Fars Salt flowed not only towards the pre‐existing Hormuz stocks but also away from them to initiate ring‐like salt walls and anticlines around some of the stocks. Subsequently, once primary welds developed around these stocks, the Fars Salt flowed outwards to source the peripheral salt walls. Our results reveal that evolving pre‐existing salt structures from an older source layer have triggered the flow of a younger salt layer and controlled the resulting salt structures. This interaction complicates the flow direction of the younger salt layer, the geometry and spatial distribution of its structures, as well as minibasin depocentre migration through time. Even though dealing with a unique case of two ‘autochthonous’ mobile salt layers, this work may also provide constraints on our understanding of the kinematics of salt flow and diapirism in other salt basins having significant ‘allochthonous’ salt that is coevally affected by deformation of the deeper autochthonous salt layer and related structures.
-
-
-
Quantifying the relationship between structural deformation and the morphology of submarine channels on the Niger Delta continental slope
Authors W. Hamish Mitchell, Alexander C. Whittaker, Mike Mayall, Lidia Lonergan and Marco PizziAbstractThe processes and deposits of deep‐water submarine channels are known to be influenced by a wide variety of controlling factors, both allocyclic and autocyclic. However, unlike their fluvial counterparts whose dynamics are well‐studied, the factors that control the long‐term behaviour of submarine channels, particularly on slopes undergoing active deformation, remain poorly understood. We combine seismic techniques with concepts from landscape dynamics to investigate quantitatively how the growth of gravitational‐collapse structures at or near the seabed in the Niger Delta have influenced the morphology of submarine channels along their length from the shelf edge to their deep‐water counterpart. From a three dimensional (3D), time‐migrated seismic‐reflection volume, which extends over 120 km from the shelf edge to the base of slope, we mapped the present‐day geomorphic expression of two submarine channels and active structures at the seabed, and created a Digital Elevation Model (DEM). A second geomorphic surface and DEM raster—interpreted to closer approximate the most recent active channel geometries—were created through removing the thickness of hemipelagic drape across the study area. The DEM rasters were used to extract the longitudinal profiles of channel systems with seabed expression, and we evaluate the evolution of channel widths, depths and slopes at fixed intervals downslope as the channels interact with growing structures. Results show that the channel long profiles have a relatively linear form with localized steepening associated with seabed structures. We demonstrate that channel morphologies and their constituent architectural elements are sensitive to active seafloor deformation, and we use the geomorphic data to infer a likely distribution of bed shear stresses and flow velocities from the shelf edge to deep water. Our results give new insights into the erosional dynamics of submarine channels, allow us to quantify the extent to which submarine channels can keep pace with growing structures, and help us to constrain the delivery and distribution of sediment to deep‐water settings.
-
-
-
Along‐strike structural linkage and interaction in an active thrust fault system: A case study from the western Sichuan foreland basin, China
Authors Gonghua Song, Maomao Wang, Danqi Jiang, Zhuxin Chen, Bing Yan and Wang Feng[This article describes structural linkage and interactions patterns in an active thrust system in the western Sichuan foreland basin. Lateral growth and linkage of thrust fault segments restrict fault development, generate a defict between structural shortening and fault displacement, limit the displacement on the main thrust ramp and lead to the emergence of secondary faults such as shallow thrust splay and fault bifurcation.
Along‐strike structural linkage and interaction between faults is common in various compressional settings worldwide. Understanding the kinematic history of fault interaction processes can provide important constraints on the geometry and evolution of the lateral growth of segmented faults in the fold‐and‐thrust belts, which are important to seismic hazard assessment and hydrocarbon trap development. In this study, we study lateral structural geometry (fault displacement and horizon shortening) of thrust fault linkages and interactions along the Qiongxi anticline in the western Sichuan foreland basin, China, using a high‐resolution 3D seismic reflection dataset. Seismic interpretation suggests that the Qiongxi anticline can be related to three west‐dipping, hard‐linked thrust fault segments that sole onto a regional shallow detachment. Results reveal that the lateral linkage of fault segments limited their development, affecting the along‐strike fault displacement distributions. A deficit between shortening and displacement is observed to increase in linkage zones where complex structural processes occur, such as fault surface bifurcation and secondary faulting, demonstrating the effect of fault linkage process on structural deformation within a thrust array. The distribution of the geometrical characteristics shows that thrust fault development in the area can be described by both the isolated fault model and the coherent fault model. Our measurements show that new fault surfaces bifurcate from the main thrust ramp, which influences both strain distribution in the relay zone and along‐strike fault slip distribution. This work fully describes the geometric and kinematic characteristics of lateral thrust fault linkage, and may provide insights into seismic interpretation strategies in other complex fault transfer zones.
]
-
-
-
Sediment dispersal and redistributive processes in axial and transverse deep‐time source‐to‐sink systems of marine rift basins: Dampier Sub‐basin, Northwest Shelf, Australia
Authors Hehe Chen, Lesli J. Wood and Robert L. Gawthorpe[Drainage outlet dimension is positive to the drainage basin area, which provides a first‐order approximation of source dimensions. Besides, interactions between axial and transverse sediment‐routings should be examined to delineate fans and their associated up‐dip drainages.
Morphological scaling relationships between source‐to‐sink segments have been widely explored in modern settings, however, deep‐time systems remain difficult to assess due to limited preservation of drainage basins and difficulty in quantifying complex processes that impact sediment dispersals. Integration of core, well‐logs and 3‐D seismic data across the Dampier Sub‐basin, Northwest Shelf of Australia, enables a complete deep‐time source‐to‐sink study from the footwall (Rankin Platform) catchment to the hanging wall (Kendrew Trough) depositional systems in a Jurassic late syn‐rift succession. Hydrological analysis identifies 24 drainage basins on the J50.0 (Tithonian) erosional surface, which are delimited into six drainage domains confined by NNE‐SSW trending grabens and their horsts, with drainage domain areas ranging between 29 and 156 km2. Drainage outlets of these drainage domains are well preserved along the Rankin Fault System scarp, with cross‐sectional areas ranging from 0.08 to 0.31 km2. Corresponding to the six drainage domains, sedimentological and geomorphological analysis identifies six transverse submarine fan complexes developing in the Kendrew Trough, ranging in areas from 43 to 193 km2. Seismic geomorphological analysis reveals over 90‐km‐long, slightly sinuous axial turbidity channels, developing in the lower topography of the Kendrew Trough which erodes toe parts of transverse submarine fan complexes. Positive scaling relationships exist between drainage outlet spacing and drainage basin length, and drainage outlet cross‐sectional area and drainage basin area, which indicates the geometry of drainage outlets can provide important constraints on source area dimensions in deep‐time source‐to‐sink studies. The broadly negative bias of fan area to drainage basin area ratios indicates net sediment losses in submarine fan complexes caused by axial turbidity current erosion. Source‐to‐sink sediment balance studies must be done with full evaluating of adjacent source‐to‐sink systems to delineate fans and their associated up‐dip drainages, to achieve an accurate tectonic and sedimentologic picture of deep‐time basins.
]
-
-
-
Detrital zircon age spectra of middle and upper Eocene outcrop belts, U.S. Gulf Coast region
More Less[AbstractRecently reported detrital zircon (DZ) data help to associate the Paleogene strata of the Gulf of Mexico region to various provenance areas. By far, recent work has emphasised upper Paleocene‐lower Eocene and upper Oligocene strata that were deposited during the two episodes of the highest sediment supply in the Paleogene. The data reveal a dynamic drainage history, including (1) initial routing of western Cordilleran drainages towards the Gulf of Mexico in the Paleocene, (2) an eastward shift of the western continental divide, from the Jura‐Cretaceous cordilleran arc to the eastern edge of the Laramide province after the Paleocene and (3) a southward shift, along the eastern Laramide province, of the headwaters of river systems draining to the Mississippi and Houston embayments at some time between the early Eocene and Oligocene. However, DZ characterisation of most (~20 Myr) of the middle Eocene‐lower Oligocene section remains limited. We present 60 DZ age spectra, most of which are from the middle or upper Eocene outcrop belts, with 50–200‐km spacing. We define six to eight distinct groups of DZ age spectra for middle and upper Eocene strata. Data from this and other studies resolve at least six substantial temporal changes in age spectra at various positions along the continental margin. The evolving age spectra constrain the middle and upper Eocene drainage patterns of large parts of interior North America. The most well‐resolved aspects of these drainage patterns include (1) persistent rivers that flowed from erosional landscapes across the Paleozoic Appalachian orogen either into the low‐lying Mississippi embayment or directly into the eastern Gulf; (2) at least during marine regressions, a trunk channel that likely flowed southward along the axial part of Mississippi Embayment and integrated tributaries from the east and west; and (3) rivers that flowed to the Houston embayment in the middle Eocene that likely originated in the Laramide province in central Colorado and southern Wyoming, as Precambrian basement highs in those source areas were being unroofed.
,This article presents 60 detrital zircon age spectra for samples from the Paleogene outcrop belt of the U.S. Gulf Coast region, with a particular emphasis on middle and upper Eocene strata. We group the age spectra along the strike of the outcrop belt and evaluate how they change through time at given points in the basin. The data facilitate a discussion of drainage patterns to the Gulf Coast in the middle and upper Eocene.
-
-
-
LA‐ICP‐MS dating of detrital zircon grains from the Cretaceous allochthonous bauxites of Languedoc (south of France): Provenance and geodynamic consequences
Authors Emilie Marchand, Michel Séranne, Olivier Bruguier and Marc Vinches[AbstractThe Cretaceous of southern France is characterised by a long erosional hiatus, outlined with bauxite deposits, which represent the only remaining sedimentary record of a key period for geodynamic reconstructions. Detrital zircons from allochthonous karst bauxites of Languedoc (Southern France) have been dated using LA‐ICP‐MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry), in order to specify the age of deposition and to constrain the provenance of the weathered material. We analysed 671 single detrital zircons grains from three karst bauxitic basins, stretching from close to the Variscan Montagne Noire to the present‐day Mediterranean Sea. Analytical results provide Variscan (300–350 Ma) and Late Proterozoic (550–700 Ma) ages as primary groups. In addition, Middle‐, Late Proterozoic and Early Archean (oldest grain at 3.55 Ga) represent significant groups. Mid‐Cretaceous zircons (118–113 Ma) provide a pooled age of 115.5 ± 3.8 Ma, which constitutes the maximum age for bauxite deposition. Results also suggest a dual source for the Languedoc bauxite: one generalised sedimentary source of regional extent and a localised source in the Variscan basement structural high, that has been progressively unroofed during Albian. Integration of these new findings with previously published thermochronological data support the presence of an Early Cretaceous marly cover on the Variscan basement, which has been weathered and then, removed during the Albian. The Languedoc bauxite provide a spatial and temporal link between the uplift of southern French Massif Central to the north, and the Pyrenean rift and its eastward extension to the south. These new results allow to constrain the timing and distribution of uplift/subsidence during the mid‐Cretaceous events in relation with the motion of the Iberian plate relative to Eurasia.
,Schematic early cretaceous evolution of the southwest european plate. Albian allochthonous bauxite deposits of languedoc are derived from both the weathered variscan basement and its valaginian marl cover. Bauxite deposits are coeval with rifting and subsidence of the pyrenean and south provence rifts.
-
-
-
Signatures of tectonic‐climatic interaction during the Late Cenozoic orogenesis along the northern Chinese Tian Shan
Authors Xudong Zhao, Huiping Zhang, Honghua Lv, Yuanyuan Lü, Xuemei Li, Kang Liu, Jiawei Zhang and Jianguo Xiong[AbstractThe Chinese Tian Shan is one of the most actively growing orogenic ranges in Central Asia. The Late Miocene‐Quaternary landscape evolution of northern Tian Shan has been significantly driven by the interaction between tectonic deformations and climate change, further modulated by the erosion of the upstream bedrocks and deposition into the downstream basins. In this study, only the accessible Kuitun River drainage basin in northern Tian Shan was considered, and detrital zircon geochronology and heavy minerals were analyzed to investigate the signature of the driving forces for Miocene sedimentation in northern Tian Shan. This study first confirmed a previously recognized tectonic uplift at ca. 7.0 Ma and further revealed that the basin sediments were mainly derived from the present glacier‐covered ridge‐crest regions during 3.3–2.5 Ma. It is suggested Late‐Pliocene to Early Pleistocene sedimentation was likely a response to the onset of the northern hemispheric glaciation. Although complicated, this study highlights that the tectonic‐climatic interaction during the Late Cenozoic orogenesis can be discriminated in the northern Chinese Tian Shan.
,Based on sedimentological information and detailed provenance analysis, it is suggested that tectonic uplift of the northern Tian Shan was likely the principal factor driving the change in sediment supply at ca. 7.0 Ma. The shift in sedimentation at ca. 3.3–2.5 Ma was mostly occurred by the contemporaneous glaciation. The growth of the northern Tian Shan during the early Pleistocene might obey critical‐taper wedge theory highlights that crucial role of glaciation in driving physical erosion and surface processes in glacier‐covered mountainous ranges.
-
-
-
Interplay of eustatic, tectonic and autogenic controls on a Late Devonian carbonate platform, northern Canning Basin, Australia
Authors Ian J. Ferguson, Anne‐Christine Da Silva, Nancy Chow and Annette D. George[Multi‐method numerical analyses of facies and magnetic susceptibility data indicate that Hull platform sedimentation was controlled by a complex interplay of global orbital forcing and local tectonic and autogenic processes.
Frasnian reef complexes along the northern margin of the Canning Basin in northwestern Australia evolved during rifting of the Fitzroy Trough. Geological investigations of the Frasnian Hull platform, which developed on an active tilted fault‐block, reveal significant lateral and vertical facies variations superimposed on prominent metre‐scale cyclicity. This study uses numerical analyses of facies and magnetic susceptibility data from three measured sections along the Hull platform to test whether a tectonic signal can be distinguished from eustatic and other signals.
Geostatistical analysis of facies variations reveals an exponential distribution of thin (<3 m) facies, characteristic of stochastic depositional processes. Thick subtidal facies predominate in the Guppy Hills (GH) and southeastern Hull Range (SHR) sections near the hangingwall margin, and thick shallow‐subtidal to intertidal facies dominate the Horse Springs drillcore (HD 14) section near the footwall margin. Power and wavelet spectral analyses indicate a strong periodic component; Average Spectral Misfit and spectral optimisation methods confirm the presence of Milankovitch eccentricity signals and suggest the presence of obliquity and precession signals. However, the results also expose strong temporal and spatial variation providing evidence for tectonic control. Spectral analyses show strongest periodicity is recorded in short intervals that are not correlated across the platform and provide evidence of variations in sedimentation rate and hiatuses. Time series for the neighbouring GH and SHR sections show no overall statistical correlation, and Markov analysis indicates weakly ordered vertical facies transitions that do not correlate across the platform. Subtidal to intertidal facies data from HD 14 core suggest that at least 35% of the section is absent, almost obscuring the Milankovitch signal. The results indicate a complex set of controls on deposition on the Hull platform with local tectonic effects having produced spatio‐temporal moderation of the underlying eustatic signals and autogenic processes adding a localised stochastic response.
]
-
-
-
Constraining recycled detritus in quartz‐rich sandstones: Insights from a multi‐proxy provenance study of the Mid‐Carboniferous, Clare Basin, western Ireland
[This multi‐proxy provenance approach identifies partly recycled sandstones in the mid‐Carboniferous Tullig Cyclothem of the Clare Basin. Taken as a whole, these data are consistent with input into the basin from the south and southwest, with first cycle peri‐Gondwanan grains and recycling of Caledonian and Laurentian grains through Devonian basins to the south.
Quartz‐rich sandstones can be produced through multiple sedimentary processes, potentially acting in combination, such as extensive sedimentary recycling or intense chemical weathering. Determining the provenance of such sedimentary rocks can be challenging due to low amounts of accessory minerals, the fact that the primary mineralogy may have been altered during transport, storage or burial and difficulties in the recognition of polycyclic components. This study uses zircon and apatite U‐Pb geochronology, apatite trace elements, zircon‐tourmaline‐rutile indices and petrographic observations to investigate the sedimentary history of mineralogically mature mid‐Carboniferous sandstones of the Tullig Cyclothem, Clare Basin, western Ireland. The provenance data show that the sandstones have been dominantly and ultimately sourced from three basement terranes: older Laurentian‐ associated rocks (ca. 900–2500 Ma) which lay to the north of the basin, peri‐Gondwanan terranes (ca. 500–700 Ma) to the south and igneous intrusive rocks associated with the Caledonian Orogenic Cycle (ca. 380–500 Ma). However, the multi‐proxy approach also helps constrain the sedimentary history and suggests that not all grain populations were derived directly from their original source. Grains with a Laurentian or a Caledonian affinity have likely been recycled through Devonian basins to the south. Grains with a peri‐Gondwanan affinity appear to be first cycle and are potentially derived from south/southwest of the basin. Taken as a whole, these data are consistent with input into the basin from the south and southwest, with the reworking of older sedimentary rocks, rather than intensive first‐cycle chemical weathering, likely explaining the compositional maturity of the sandstones. This study highlights the need for a multi‐proxy provenance approach to constrain sedimentary recycling, particularly in compositionally mature sandstones, as the use of zircon geochronology alone would have led to erroneous provenance interpretations. Zircon, together with U‐Pb geochronology from more labile phases such as apatite, can help distinguish first‐cycle versus polycyclic detritus.
]
-
-
-
Reconstruction of the Cenozoic deformation of the Bohai Bay Basin, North China
Authors Yinbing Zhu, Shaofeng Liu, Bo Zhang, Michael Gurnis and Pengfei Ma[AbstractA well‐constrained plate deformation model may lead to an improved understanding of sedimentary basin formation and the connection between subduction history and over‐riding plate deformation. Building quantitative models of basin kinematics and deformation remains challenging often due to the lack of comprehensive constraints. The Bohai Bay Basin (BBB) is an important manifestation of the destruction of the North China Craton, and records the plate kinematic history of East Asia during the Cenozoic. Although a number of interpretations of the formation of the BBB have been proposed, few quantitative basin reconstruction models have been built to test and refine previous ideas. Here, we developed a quantitative deformation reconstruction of the BBB constrained with balanced cross‐sections and structural, stratigraphic and depositional age data. Our reconstruction suggests that the basin formation process was composed of three main stages: Paleocene‐early Eocene (65–42 Ma) extension initiation, middle Eocene‐early Oligocene (42–32.8 Ma) extension climax and post‐Oligocene (32.8–0 Ma) post‐extensional subsidence. The deformation of the BBB is spatially heterogeneous, and its velocity directions rotated clockwise during the basin formation process. The reconstruction supports the interpretation that the BBB formed via strike‐slip faulting and orthogonal extension and that the basin is classified as a composite extensional‐transtensional basin. We argue that the clockwise rotation of the basin velocity field was driven by the counter‐clockwise rotation in the direction of Pacific Plate subduction. The kinematics of the BBB imply that the Pacific Plate may have been sufficiently coupled to the over‐riding East Asian Plate during the critical period of Pacific Plate reorganization. The new reconstruction provides a quantitative basis for studies of deformation processes not only in the vicinity of the BBB, but also more broadly throughout East Asia.
,This study suggests that the Bohai Bay Basin is a composite extensional‐transtensional basin and that the counter‐clockwise rotation in the direction of Pacific Plate subduction drove the clockwise rotation of the basin velocity field.
-
-
-
Large‐scale connectivity of fluvio‐deltaic stratigraphy: Inferences from simulated accommodation‐to‐supply cycles and automated extraction of chronosomes
Authors Pantelis Karamitopoulos, Gert J. Weltje and Rory A. F. Dalman[AbstractMultiscale simulation of fluvio‐deltaic stratigraphy was used to quantify the elements of the geometry and architectural arrangement of sub‐seismic‐scale fluvial‐to‐shelf sedimentary segments. We conducted numerical experiments of fluvio‐deltaic system evolution by simulating the accommodation‐to‐sediment‐supply (A/S) cycles of varying wavelength and amplitude with the objective to produce synthetic 3‐D stratigraphic records. Post‐processing routines were developed in order to investigate delta lobe architecture in relation to channel‐network evolution throughout A/S cycles, estimate net sediment accumulation rates in 3‐D space, and extract chronostratigraphically constrained lithosomes (or chronosomes) to quantify large‐scale connectivity, that is, the spatial distribution of high net‐to‐gross lithologies. Chronosomes formed under the conditions of channel‐belt aggradation are separated by laterally continuous abandonment surfaces associated with major avulsions and delta‐lobe switches. Chronosomes corresponding to periods in which sea level drops below the inherited shelf break, that is, the youngest portions of the late falling stage systems tract (FSST), form in the virtual absence of major avulsions, owing to the incision in their upstream parts, and thus display purely degradational architecture. Detailed investigation of chronosomes within the late FSST showed that their spatial continuity may be disrupted by higher‐frequency A/S cycles to produce “stranded” sand‐rich bodies encased in shales. Chronosomes formed during early and late falling stage (FSST) demonstrate the highest large‐scale connectivity in their proximal and distal areas, respectively. Lower‐amplitude base level changes, representative of greenhouse periods during which the shelf break is not exposed, increase the magnitude of delta‐lobe switching and favour the development of system‐wide abandonment surfaces, whose expression in real‐world stratigraphy is likely to reflect the intertwined effects of high‐frequency allogenic forcing and differential subsidence.
,In this article, we used a process‐based forward stratigraphic model to simulate accommodation‐to‐supply (A/S) cycles of varying wavelength and amplitude. Post‐processing of synthetic stratigraphy allows to extract chronostratigraphically constrained lithosomes (or chronosomes). Large‐scale connectivity represents the spatio‐temporal continuity of high‐net to gross fluvio‐deltaic chronosomes. The timing and location of major avulsions and the magnitude of delta‐lobe switches are captured throughout the simulated A/S cycles.
-
-
-
Stratigraphic architecture of Solander Basin records Southern Ocean currents and subduction initiation beneath southwest New Zealand
[AbstractSolander Basin is characterized by subduction initiation at the Pacific‐Australia plate boundary, where high biological productivity is found at the northern edge of the Antarctic Circumpolar Current. Sedimentary architecture results from tectonic influences on accommodation space, sediment supply and ocean currents (via physiography); and climate influence on ocean currents and biological productivity. We present the first seismic‐stratigraphic analysis of Solander Basin based on high‐fold seismic‐reflection data (voyage MGL1803, SISIE). Solander Trough physiography formed by Eocene rifting, but basinal strata are mostly younger than ca. 17 Ma, when we infer Puysegur Ridge formed and sheltered Solander Basin from bottom currents, and mountain growth onshore increased sediment supply. Initial inversion on the Tauru Fault started at ca. 15 Ma, but reverse faulting from 12 to ca. 8 Ma on both the Tauru and Parara Faults was likely associated with reorganization and formation of the subduction thrust. The new seabed topography forced sediment pathways to become channelized at low points or antecedent gorges. Since 5 Ma, southern Puysegur Ridge and Fiordland mountains spread out towards the east and Solander Anticline grew in response to ongoing subduction and growth of a slab. Solander Basin had high sedimentation rates because (1) it is sheltered from bottom currents by Puysegur Ridge; and (2) it has a mountainous land area that supplies sediment to its northern end. Sedimentary architecture is asymmetric due to the Subtropical Front, which moves pelagic and hemi‐pelagic sediment, including dilute parts of gravity flows, eastward and accretes contourites to the shelf south of Stewart Island. Levees, scours, drifts and ridges of folded sediment characterize western Solander Basin, whereas hemi‐pelagic drape and secondary gravity flows are found east of the meandering axial Solander Channel. The high‐resolution record of climate and tectonics that Solander Basin contains may yield excellent sites for future scientific ocean drilling.
,Depositional patterns in Solander Basin are caused by the interplay between sediment gravity flows sourced from tectonically‐active mountains, pelagic biogenic sediment, and the Subtropical Front, which is a strong ocean current that modifies deposition. Tectonic growth of Puysegur Trench and Ridge since ~17 Ma created an oceanographic barrier and hence depocentre. Ongoing growth of secondary faults since then has changed sediment supply and pathways, and can be linked to progressive maturity of subduction initiation.
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)