- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 6, Issue 1, 1994
Basin Research - Volume 6, Issue 1, 1994
Volume 6, Issue 1, 1994
-
-
Fluid flow in sedimentary basins: model of pore water flow in a vertical fracture
Authors TOM Pedersen and KNUT BjørlykkeAbstractOpen fractures provide high‐permeability pathways for fluid flow in sedimentary basins. The potential for flow along permeable or open fractures and faults depends on the continuity of flow all the way to the surface except in the case of convective flow. Upward flowing fluid cools and may cause cementation due to the prograde solubility of quartz, but in the case of carbonates such flow may cause dissolution. The rate and duration of these processes depend on the mechanisms for sustaining fluid flow into the fracture, the geometries of fracture and sedimentary beds intersected, permeability, pressure and temperature gradients. Heat loss to the adjacent sediments causes sloping isotherms which can induce non‐Rayleigh convection. To analyse these problems we have used a simple model in which a single fracture acts as a pathway for vertically moving fluid and there is no fluid transport across the walls of the fracture except near its inlet and outlet. Four mechanisms for fluid flow into the lower part of the fracture are considered: decompression of pore water; compaction of intersected overpressared sediments; focusing of compaction water derived from sediments beneath the fracture; and finally focusing of pore water moving through an aquifer. Water derived from the basement is not considered here. We find that sustained flow is unlikely to have velocities much higher than 1–100 m/yr, and the flow is laminar. The temperature of the fluid expelled at the top of the fracture increases by less than 1% and the vertical temperature gradient in the fracture remains close to the geothermal gradient. Where hot water is introduced from basement fractures (hydrothermal water) during tectonic deformation, much higher velocities may be sustained in the overlying sediments, but here also this depends on the permeability near the surface. Most of the cooling of water with (ore) mineral precipitation will then occur near the surface. In most cases, pore water decompression and sediment compaction will yield only very limited pore water flux with no significant potential for cementation or heating of the sediments adjacent to the fracture. Focusing of compaction water from sediments beneath the fracture or from an intersected aquifer can yield fluxes high enough to cement an open fracture significantly but the flow must be sustained for a very long time. For velocities of 1–100 m/yr, it takes typically 0.3–30 Myr to cement a fracture by 50%. The highest velocities may be obtained when a fracture extends all the way to the surface or sea floor. When a fracture does not reach the sediment surface, the flow velocity is reduced by the displacement of water in the sediments near the top of the fracture. The flow into the fracture from the sediments may often be rate limiting rather than the flow on the fracture. Sedimentary rocks only a few metres from the fracture will receive a much lower flux than the fracture. The fracture will therefore close due to cementation before significant amounts of silica can be introduced into adjacent sandstones. The isotherm slope in the adjacent sediments will in most cases be less than 10–20°. Non‐Rayleigh convection velocities in the sediments adjacent to the fracture are too small to cause any significant diagenetic reactions such as quartz cementation. These quantifications of fluid flow in fractures in sedimentary basins are important in terms of constraining models for diagenesis, heat transport and formation of ore minerals in a compaction‐driven system.
-
-
-
Late Quaternary turbidity current pathways to the Madeira Abyssal Plain and some constraints on turbidity current mechanisms
By D. G. MassonAbstractTurbidites deposited in the Madeira Abyssal Plain during the last 200 000 yr originated mainly from the flanks of the Canary Islands and from the Northwest African continental margin north of the Canaries. Derivation of these turbidites from sources to the east of the abyssal plain apparently contradicts flow direction indicators derived from the sediments on the plain, which indicate derivation from the north‐east. However, two systems of shallow channels, mapped using side‐scan sonar and 3.5‐kHz data, link the easterly sediment sources to the north‐eastern edge of the abyssal plain, reconciling the apparently contradictory flow direction data. A northern system originates in the area between Madeira and the Canary Islands and follows a westerly and then north‐westerly path, in part cutting obliquely across regional bathymetric trends. It carries sediment from the African continental margin north of the Canary Islands, and from the eastern Canaries, to the north‐eastern abyssal plain. The southern channel system carries material from the western Canary Islands more directly westward to the central part of the plain. The pathways of individual turbidites can be reconstructed in some detail, by combining channel mapping with published information on turbidite provenance and flow directions on the Madeira Abyssal Plain. Interaction between turbidity currents and channel morphology controls turbidite depositional patterns. Small turbidites are completely contained within channels 20 m deep and 2 km wide. It is proposed that these are relatively high‐density flows which have evolved in crossing the almost flat floor of a basin south‐east of Madeira before entering the channel system. Larger turbidites show evidence of flow stripping where they interact with channels, with the result that their coarse and fine fractions follow different paths to and across the abyssal plain.
-
-
-
Evolution of a transfer‐related basin: the Ardea basin (Latium, central Italy)
More LessAbstractDuring the Messinian—Pleistocene, the Peninsular Tyrrhenian margin underwent a NE—SW orientated stretching regime, with the formation of a NW—SE normal fault system and basins which are linked by NE—SW transfer fault zones. These fault zones border narrow and deep asymmetric basins. This paper uses geological and geophysical analysis (structural and stratigraphical data, seismic lines and anisotropy of magnetic susceptibility (AMS) data) to look at the evolution of one of these transfer‐related basins, located south of Rome (Ardea basin). Comparison with other similar features indicates that the common characteristics of these transfer structures are: (i) the slip vector along the transfer fault is mostly dip‐slip, which means that the local extensional direction is orthogonal to the regional extensional direction; (ii) development of a narrow and deep half‐graben basin.
-
-
-
Anomalous thermal maturities caused by carbonaceous sediments
Authors HENRY N. Pollack and KAREN ROSE CerconeAbstractSedimentary rocks such as coal and carbonaceous mudstone which contain abundant carbonaceous matter are characterized by thermal conductivity much lower than that exhibited by other common rock types, by a factor of 5–10. As a result, temperature gradients in such sediments can range up to 0.25 °Cm‐1 even under conditions of average heat flow. When such steep gradients extend over a significant sedimentary thickness, temperatures of underlying rock units are elevated, causing both organic and inorganic phases to record what seem to be anomalously high levels of thermal maturity. This carbonaceous blanket insulating effect may help to explain unusual levels of maturity observed at shallow depths in the Appalachian Basin, Michigan Basin and other regions of the world with significant carbonaceous strata.
-
-
-
BOOK REVIEWS
Book reviewed in this article:
Foreland Basins and Fold Belts R. W. Macqueen & D. A. Leckie
Applied Petroleum Geochemistry M. L. Bordenave (Ed.)
Hydrocarbon Migration System Analysis J. M. Venveu
Inorganic Geochemistry: Applications to Petroleum Geology D. Emery and A. Robinson
Characterization of Fluvial and Aeolian Reservoirs C. P. North and D. J. Prosser (Eds)
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)