- Home
- A-Z Publications
- Geophysical Prospecting
- Previous Issues
- Volume 62, Issue 1, 2014
Geophysical Prospecting - Volume 62, Issue 1, 2014
Volume 62, Issue 1, 2014
-
-
Interferometric interpolation of sparse marine data
Authors Sherif M. Hanafy and Gerard T. SchusterABSTRACTWe present the theory and numerical results for interferometrically interpolating 2D and 3D marine surface seismic profiles data. For the interpolation of seismic data we use the combination of a recorded Green's function and a model‐based Green's function for a water‐layer model. Synthetic (2D and 3D) and field (2D) results show that the seismic data with sparse receiver intervals can be accurately interpolated to smaller intervals using multiples in the data. An up‐ and downgoing separation of both recorded and model‐based Green's functions can help in minimizing artefacts in a virtual shot gather. If the up‐ and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively use a non‐stationary 1D multi‐channel matching filter with the interpolated data. Results suggest that a sparse marine seismic survey can yield more information about reflectors if traces are interpolated by interferometry. Comparing our results to those of f‐k interpolation shows that the synthetic example gives comparable results while the field example shows better interpolation quality for the interferometric method.
-
-
-
Subsurface offset behaviour in velocity analysis with extended reflectivity images
By W.A. MulderABSTRACTMigration velocity analysis with the constant‐density acoustic wave equation can be accomplished by the focusing of extended migration images, obtained by introducing a subsurface shift in the imaging condition. A reflector in a wrong velocity model will show up as a curve in the extended image. In the correct model, it should collapse to a point. The usual approach to obtain a focused image involves a cost functional that penalizes energy in the extended image at non‐zero shift. Its minimization by a gradient‐based method should then produce the correct velocity model. Here, asymptotic analysis and numerical examples show that this method may be too sensitive to amplitude peaks at large shifts at the wrong depth and to artefacts. A more robust alternative is proposed that can be interpreted as a generalization of stack power and maximizes the energy at zero‐subsurface shift. A real‐data example is included.
-
-
-
Locating microseismic events using borehole data
Authors G.A. Jones, J.‐M. Kendall, I.D. Bastow and D.G. RaymerABSTRACTConstraining microseismic hypocentres in and around hydrocarbon reservoirs and their overburdens is essential for the monitoring of deformation related to hydraulic fracturing, production and injection and the assessment of reservoir security for CO2 and wastewater storage. Microseismic monitoring in hydrocarbon reservoirs can be achieved via a variety of surface and subsurface acquisition geometries. In this study we use data from a single, subsurface, vertical array of sensors. We test an existing technique that uses a 1D velocity model to constrain locations by minimizing differential S‐to‐P arrival times for individual sensors. We show that small errors in either arrival time picks or the velocity model can lead to large errors in depth, especially near velocity model discontinuities where events tend to cluster. To address this issue we develop two methods that use all available arrival times simultaneously in the inversion, thus maximizing the number of potential constraints from to N, where N is the number of phase picks. The first approach minimizes all available arrival time pairs whilst the second approach, the equal distance time (EDT) method defines the hypocentre as the point where the maximum number of arrival time surfaces intersect. We test and compare the new location procedures with locations using differential S‐to‐P times at each individual sensor on a microseismic data set recorded by a vertical array of sensors at the Ekofisk reservoir in the North Sea. Specifically, we test each procedure's sensitivity to perturbations in measured arrival times and the velocity model using Monte Carlo analysis. In general, location uncertainties increase with increasing raypath length. We show that errors in velocity model estimates are the most significant source of uncertainty in source location with these experiments. Our tests show that hypocentres determined by the new procedures are less sensitive to erroneous measurements and velocity model uncertainties thus reducing the potential for misinterpretation of the results.
-
-
-
The use of pseudorandom sweeps for vibroseis surveys
By T. DeanABSTRACTPseudorandom vibroseis sweeps have long been suggested as an alternative to standard linear sweeps due to their potential for having superior orthogonality, a lower likelihood for infrastructure damage, and increased low‐frequency content. In the past, they were also attractive as they have a better autocorrelation shape, although that is less important today. Their use has been limited but the increasing popularity of simultaneous acquisition techniques has rekindled interest as they offer the ability to reduce interference noise. A wide variety of methods for generating pseudorandom sweeps have been developed over the last 45 years. This paper gives an overview of the motivations for their use before classifying and describing the different sweep types. Finally, the sweeps will be compared in terms of their major attributes including their suitability for simultaneous surveys.
-
-
-
An insightful parametrization for the flatlander's interpretation of time‐lapsed seismic data
Authors Erick Alvarez and Colin MacBethABSTRACTAn approximation is developed that allows mapped 4D seismic amplitudes and time‐shifts to be related directly to the weighted linear sum of pore pressure and saturation changes. The weights in this relation are identified as key groups of parameters from a petroelastic model and include the reservoir porosity. This dependence on groups of parameters explains the inherent non‐uniqueness of this problem experienced by previous researchers. The proposed relation is of use in 4D seismic data feasibility studies and inversion and interpretation of the 4D seismic response in terms of pore pressure and water saturation changes. A further result is drawn from analysis of data from the North Sea and West Africa, which reveals that the relative interplay between the effects of pore pressure and saturation changes on the seismic data can be simplified to the control of a single, spatially variant parameter CS/CP. Combining these results with those from published literature, we find that CS/CP = 8 appears to be a generality across a range of clastic reservoirs with a similar mean porosity. Using this CS/CP value, an in situ seismic‐scale constraint for the rock stress sensitivity component of the petroelastic model is constructed considering this component carries the largest uncertainty.
-
-
-
A new laboratory technique for determining the compressional wave properties of marine sediments at sonic frequencies and in situ pressures†
Authors Clive McCann, Jeremy Sothcott and Angus I. BestABSTRACTWe describe a new laboratory technique for measuring the compressional wave velocity and attenuation of jacketed samples of unconsolidated marine sediments within the acoustic (sonic) frequency range 1–10 kHz and at elevated differential (confining – pore) pressures up to 2.413 MPa (350 psi). The method is particularly well suited to attenuation studies because the large sample length (up to 0.6 m long, diameter 0.069 m) is equivalent to about one wavelength, thus giving representative bulk values for heterogeneous samples. Placing a sediment sample in a water‐filled, thick‐walled, stainless steel Pulse Tube causes the spectrum of a broadband acoustic pulse to be modified into a decaying series of maxima and minima, from which the Stoneley and compressional wave, velocity and attenuation of the sample can be determined. Experiments show that PVC and copper jackets have a negligible effect on the measured values of sediment velocity and attenuation, which are accurate to better than ± 1.5% for velocity and up to ± 5% for attenuation. Pulse Tube velocity and attenuation values for sand and silty‐clay samples agree well with published data for similar sediments, adjusted for pressure, temperature, salinity and frequency using standard equations. Attenuation in sand decreases with pressure to small values below Q−1 = 0.01 (Q greater than 100) for differential pressures over 1.5 MPa, equivalent to sub‐seafloor depths of about 150 m. By contrast, attenuation in silty clay shows little pressure dependence and intermediate Q−1 values between 0.0206–0.0235 (Q = 49–43). The attenuation results fill a notable gap in the grain size range of published data sets. Overall, we show that the Pulse Tube method gives reliable acoustic velocity and attenuation results for typical marine sediments.
-
-
-
Quasi‐continuous reservoir monitoring with surface seismic data
Authors Adeyemi Arogunmati and Jerry M. HarrisABSTRACTWe present an approach that creates the possibility of reservoir monitoring on a quasi‐continuous basis using surface seismic data. Current strategies and logistics for seismic data acquisition impose restrictions on the calendar‐time temporal resolution obtainable for a given surface‐seismic time‐lapse monitoring program. One factor that restricts the implementation of a quasi‐continuous monitoring program using conventional strategies is the time it takes to acquire a complete survey. Here quasi‐continuous monitoring describes the process of reservoir monitoring at short‐time intervals. Our approach circumvents the restriction by requiring only a subset of complete survey data each time an image of the reservoir is needed using surface seismic data. Ideally, the time interval between survey subset acquisitions should be short so that changes in the reservoir properties are small. The accumulated data acquired are used to estimate the unavailable data at the monitor survey time and the combined recorded and estimated data are used to produce an image of the subsurface for monitoring. We will illustrate the effectiveness of our approach using 2D and 3D synthetic seismic data and 3D field seismic data. We will explain the benefits and drawbacks of the proposed approach.
-
-
-
Numerical analysis of seismoelectric wave propagation in spatially confined geological units
Authors Bernd Kröger, Ugur Yaramanci and Andreas KemnaABSTRACTUsing numerical modelling, we investigate the evolution of seismoelectric effects induced by seismic excitation in spatially confined lithological units. Typical geometries represent clay lenses embedded in an aquifer or petroleum deposits in a host rock. In fluid‐saturated rocks, seismic waves can generate electromagnetic fields due to electrokinetic coupling mechanisms associated with such processes in the vicinity of the fluid‐mineral interface. Two seismoelectric phenomena are investigated: (1) the co‐seismic field associated with the seismic displacement at each point in a subsurface and (2) the interface response generated at layer boundaries. Our modelling uses a simplified time‐domain formulation of the coupled problem and an efficient 2D finite‐element implementation. To gain insight into the morphogenetic field behaviour of the seismoelectric effects, several numerical simulations for various target geometries were treated. Accordingly, we varied both the thickness of the confined units and the value of the electrical bulk conductivity in porous media. Analysis of these effects shows differences between interface responses for electrically conductive versus resistive units. So the pertinent contrast in electrical bulk conductivity controls the shape and structure of these seismoelectric conversion patterns. Moreover, the seismoelectric interface response captures both the petrophysical and geometrical characteristics of the geological unit. These models demonstrate the value of using seismoelectric interface response for reservoir characterization in either hydrogeological or hydrocarbon exploration studies.
-
-
-
Application of the continuous wavelet transform of gravity and magnetic data to estimate sub‐basalt sediment thickness
Authors Palkesh Goyal and V.M. TiwariABSTRACTThe Continuous Wavelet Transform was recently proposed for the interpretation of gravity and magnetic potential data. We utilize the Continuous Wavelet Transform of gravity and magnetic data to address one of the most common issues in exploration geophysics: mapping of sub‐basaltic sedimentary strata. We observe that the magnetic response of the basaltic layer is dominant in a three‐layer case of a basalt‐sediment‐basement, whereas the gravity signal is dominated by the base of the sediment. Thus the Continuous Wavelet Transform of the magnetic data is related to the thickness of the basalt and the Continuous Wavelet Transform of the gravity data is related mostly to the bottom of the sediment. These observations are demonstrated with a synthetic model and a few field examples. Derived depths using Continuous Wavelet Transform are in good agreement with known vertical cross‐sections. Therefore, Continuous Wavelet Transform analysis of both gravity and magnetic data offers a possibility for primary information of sub‐basaltic sediment thickness, which can provide a basis for further detailed modelling.
-
-
-
A theoretical study on terrestrial gravimetric data refinement by Earth gravity models
By Mehdi EshaghABSTRACTThe idea of this paper is to present estimators for combining terrestrial gravity data with Earth gravity models and produce a high‐quality source of the Earth's gravity field data through all wavelengths. To do so, integral and point‐wise estimators are mathematically developed, based on the spectral combination theory, in such a way that they combine terrestrial data with one and/or two Earth gravity models. The integral estimators are developed so that they become biased or unbiased to a priori information. For testing the quality of the estimators, their global mean square errors are generated using an Earth gravity model08 model and one of the recent products of the gravity field and steady‐state ocean circulation explorer mission. Numerical results show that the integral estimators have smaller global root mean square errors than the point‐wise ones but they are not efficient practically. The integral estimator of the biased type is the most suited due to its smallest global root mean square error comparing to the rest of the estimators. Due largely to the omission errors of Earth gravity models the point‐wise estimators are not sensitive to the Earth gravity model commission error; therefore, the use of high‐degree Earth gravity models is very influential for reduction of their root mean square errors. Also it is shown that the use of the ocean circulation explorer Earth gravity model does not significantly reduce the root mean square errors of the presented estimators in the presence of Earth gravity model08. All estimators are applied in the region of Fennoscandia and a cap size of 2° for numerical integration and a maximum degree of 2500 for generation of band‐limited kernels are found suitable for the integral estimators.
-
-
-
Optimized arrays for 2D cross‐borehole electrical tomography surveys
Authors M.H. Loke, P.B. Wilkinson, J.E. Chambers and M. StruttABSTRACTThe use of optimized arrays generated using the ‘Compare R’ method for cross‐borehole resistivity measurements is examined in this paper. We compare the performances of two array optimization algorithms, one that maximizes the model resolution and another that minimizes the point spread value. Although both algorithms give similar results, the model resolution maximization algorithm is several times faster. A study of the point spread function plots for a cross‐borehole survey shows that the model resolution within the central zone surrounded by the borehole electrodes is much higher than near the bottom end of the boreholes. Tests with synthetic and experimental data show that the optimized arrays generated by the ‘Compare R’ method have significantly better resolution than a ‘standard’ measurement sequence used in previous surveys. The resolution of the optimized arrays is less if arrays with both current (or both potential) electrodes in the same borehole are excluded. However, they are still better than the ‘standard’ arrays.
-
-
-
Research Note: Experimental measurements of Q‐contrast reflections
Authors Larry Lines, Joe Wong, Kris Innanen, Fereidoon Vasheghani, Carl Sondergeld, Sven Treitel and Tadeusz UlrychABSTRACTWhile seismic reflection amplitudes are generally determined by real acoustical impedance contrasts, there has been recent interest in reflections due to contrasts in seismic‐Q. Herein we compare theoretical and modelled seismic reflection amplitudes for two different cases of material contrasts. In case A, we examine reflections from material interfaces that have a large contrast in real‐valued impedance () with virtually no contrast in seismic‐Q. In case B, we examine reflections from material interfaces that have virtually no contrast in but that have very large seismic‐Q contrasts. The complex‐valued reflection coefficient formula predicts non‐zero seismic reflection amplitudes for both cases. We choose physical materials that typify the physics of both case A and case B. Physical modelling experiments show significantly large reflections for both cases – with the reflections in the two cases being phase shifted with respect to each other, as predicted theoretically. While these modelling experiments show the existence of reflections that are predicted by theory, there are still intriguing questions regarding the size of the Q‐contrast reflections, the existence of large Q‐contrast reflections in reservoir rocks and the possible application of Q‐reflection analysis to viscosity estimation in heavy oilfields.
-
Volumes & issues
-
Volume 72 (2023 - 2024)
-
Volume 71 (2022 - 2023)
-
Volume 70 (2021 - 2022)
-
Volume 69 (2021)
-
Volume 68 (2020)
-
Volume 67 (2019)
-
Volume 66 (2018)
-
Volume 65 (2017)
-
Volume 64 (2015 - 2016)
-
Volume 63 (2015)
-
Volume 62 (2014)
-
Volume 61 (2013)
-
Volume 60 (2012)
-
Volume 59 (2011)
-
Volume 58 (2010)
-
Volume 57 (2009)
-
Volume 56 (2008)
-
Volume 55 (2007)
-
Volume 54 (2006)
-
Volume 53 (2005)
-
Volume 52 (2004)
-
Volume 51 (2003)
-
Volume 50 (2002)
-
Volume 49 (2001)
-
Volume 48 (2000)
-
Volume 47 (1999)
-
Volume 46 (1998)
-
Volume 45 (1997)
-
Volume 44 (1996)
-
Volume 43 (1995)
-
Volume 42 (1994)
-
Volume 41 (1993)
-
Volume 40 (1992)
-
Volume 39 (1991)
-
Volume 38 (1990)
-
Volume 37 (1989)
-
Volume 36 (1988)
-
Volume 35 (1987)
-
Volume 34 (1986)
-
Volume 33 (1985)
-
Volume 32 (1984)
-
Volume 31 (1983)
-
Volume 30 (1982)
-
Volume 29 (1981)
-
Volume 28 (1980)
-
Volume 27 (1979)
-
Volume 26 (1978)
-
Volume 25 (1977)
-
Volume 24 (1976)
-
Volume 23 (1975)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1972)
-
Volume 19 (1971)
-
Volume 18 (1970)
-
Volume 17 (1969)
-
Volume 16 (1968)
-
Volume 15 (1967)
-
Volume 14 (1966)
-
Volume 13 (1965)
-
Volume 12 (1964)
-
Volume 11 (1963)
-
Volume 10 (1962)
-
Volume 9 (1961)
-
Volume 8 (1960)
-
Volume 7 (1959)
-
Volume 6 (1958)
-
Volume 5 (1957)
-
Volume 4 (1956)
-
Volume 3 (1955)
-
Volume 2 (1954)
-
Volume 1 (1953)